ARC Cognition and Brain Sciences Unit

M/EEG source analysis

Rik Henson

MRC CBU, Cambridge

(with thanks to Christophe Phillips, Jeremie Mattout, Gareth Barnes, Jean Daunizeau, Stefan Kiebel and Karl Friston)

- 1. Forward Models for M/EEG
- 2. Variational Bayesian Dipole Estimation (ECD)
- 3. Empirical Bayesian Distributed Estimation
- 4. Multimodal integration

1. Forward Models for M/EEG

- 2. Variational Bayesian Dipole Estimation (ECD)
- 3. Empirical Bayesian Distributed Estimation
- 4. Multimodal integration

Forward Problem

m Model

Inverse Problem

Forward Problem: Physics

ľ

Current density: Likelihood Orientation Location = tQuasi-static Maxwell's Equations: $\nabla \cdot E$ $= \frac{\rho}{\rho}$ Kirkoff's law: Е М $Y = \overline{\Phi}$ (EEG) Y = B (MEG) $\nabla \cdot i = 0$ Electrical potential $\times B$ MRC | Medical Research Council

Cognition and

Brain Sciences Unit

MRC

Forward Problem: Physics

f depends on: location (orientation) of sensors geometry of head conductivity of head (source space)

Can have analytic or numerical form...

Forward Problem: Head Models

MRC Cognition and Brain Sciences Unit

Concentric Spheres:

Pros: Analytic; Fast to computeCons: Head not spherical; Conductivitynot homogeneous

Boundary (or Finite) Element Models:

Pros: Realistic geometry Homogeneous conductivity within boundaries

Cons: Numeric; Slow Approximation Errors

Other approaches (for MEG): Fit local spheres to each sensor;MRC | Medical Research CouncilSingle shell, spherical approx (Nolte)

Forward Problem: Meshes

MRC Cognition and Brain Sciences Unit

3 important surfaces for BEMs are those with large changes in conductivity: Scalp (skin-air boundary) Outer Skull (bone-skin boundary) Inner Skull (CSF-bone boundary)

(Represented as tessellated triangular meshes)

Extracting these surfaces from an MRI is difficult, eg, because CSF-bone T1-contrast is poor (use PD?)...

A fourth important surface (for some solutions) is: Cortex (WM-GM boundary)

Extracting this surface from an MRI is very difficult because so convoluted (though FreeSurfer)...

Forward Problem: Canonical Meshes

MRC Cognition and Brain Sciences Unit

Rather than extract surfaces from individuals MRIs, why not warp Template surfaces from an MNI brain based on spatial (inverse) normalisation?

Recap: (Spatial Normalisation)

MRC Cognition and Brain Sciences Unit

Forward Problem: Canonical Meshes

Rather than extract surfaces from individuals MRIs, why not warp Template surfaces from an MNI brain based on spatial (inverse) normalisation?

Mattout et al (2007), Comp Int & Neuro

Canonical Template (Inverse-Normalised)

(Also provides a 1-to-1 mapping across subjects, so source solutions can be written directly to MNI space, and group-inversion applied; see later)

Given that surfaces are part of the forward model (m), can use the model evidence p(Y | m) to determine whether Canonical Meshes are sufficient Henson et al (2009), Neuroimage

Individual

Forward Problem: ECD vs Distributed

MRC Cognition and Brain Sciences Unit

For small number of Equivalent Current Dipoles (ECD) anywhere in brain: is linear in but non-linear in r $Y = f(\overset{\square}{r})\overset{\square}{j}$

For (large) number of (Distributed) dipoles with fixed orientation and location: is linear in r $Y = F(\begin{bmatrix} N & N & N \\ r_1 & r_2 & r_N \end{bmatrix})J$

- 1. Forward Models for M/EEG
- 2. Variational Bayesian Dipole Estimation (ECD)
- 3. Empirical Bayesian Distributed Estimation
- 4. Multimodal integration

Inverse Problem: VB-ECD

Standard ECD approaches iterate location/orientation (within a brain volume) until fit to sensor data is maximised (i.e, error minimised). But:

- 1. Local Minima (particularly when multiple dipoles)
- 2. Question of how many dipoles?

With a Variational Bayesian (VB) framework, priors can be put on the locations and orientations (and strengths) of dipoles (e.g, symmetry constraints)

 $p(\vec{r}, \vec{j}, \lambda_r, \lambda_j, \lambda_e \mid m) = p(Y \mid \vec{r}, \vec{j}, \lambda_e, m) p(\lambda_e \mid m) p(\vec{r} \mid \lambda_r, m) p(\lambda_r \mid m) p(\vec{j} \mid \lambda_j, m) p(\lambda_j \mid m)$ $MRC \mid Medical Research Council Kiebel et al (2008), Neuroimage$

Inverse Problem: VB-ECD

MRC Cognition and Brain Sciences Unit

Maximising the (free-energy approximation to the) model evidence p(Y | m) offers a natural answer to question of the number of dipoles

Kiebel et al (2008), Neuroimage

Inverse Problem: DCM

MRC | Medical Research Council

MRC Cognition and Brain Sciences Unit

Dynamic Causal Modelling (DCM) can be seen as a source localisation (inverse) method that includes temporal constraints on the source activities

David et al (2011), Journal of Neuroscience

- 1. Forward Models for M/EEG
- 2. Variational Bayesian Dipole Estimation (ECD)
- 3. Empirical Bayesian Distributed Estimation
- 4. Multimodal integration

Inverse Problem: Distributed

Given *p* sources fixed in location (e.g, on a cortical mesh)...

...linear Forward Model for MEG/EEG:

- $\mathbf{Y} = \mathbf{L}\mathbf{J} + \mathbf{E} \qquad \mathbf{E} \sim N(\mathbf{0}, \mathbf{C}^{(e)})$
- Y = Datan sensorsJ = Sourcesp >> n sourcesL = Leadfieldsn sensors x p sourcesE = Errorn sensors......draw from Gaussian covariance $C^{(e)}$

(Free orientations can be simulated by having 2-3 columns in *L* per location)

Fact that *p*>>*n* means under-determined problem (cf. GLM and ECD)... ...so some form of regularisation needed, e.g, "Weighted L2-norm"...

MRC Cognition and Brain Sciences Unit Inverse Problem: Standard L2-norm

 $\mathbf{Y} = \mathbf{L}\mathbf{J} + \mathbf{E} \qquad \mathbf{E} \sim N(\mathbf{0}, \mathbf{C}^{(e)})$

$$\mathbf{J} = \arg\min\{\left\|\mathbf{C}^{(e)^{-1/2}}(\mathbf{Y} - \mathbf{L}\mathbf{J})\right\|^{2} + \left\|\mathbf{W}\mathbf{J}\right\|^{2}\}$$

$$= (\mathbf{W}^T \mathbf{W})^{-1} \mathbf{L}^T [\mathbf{L} (\mathbf{W}^T \mathbf{W})^{-1} \mathbf{L}^T + \lambda \mathbf{C}^{(e)}]^{-1} \mathbf{Y}$$

"Tikhonov Solution"

 $||Y - LJ||^{2}$ *"L-curve" method* $\lambda = regularisation$ (hyperparameter) $||WJ||^{2}$

W = I "Minimum Norm" $W = DD^{T}$ "Loreta" (D=Laplacian) $W = diag(L^{T}L)^{-1}$ "Depth-Weighted" $W_{p} = diag(L_{p}^{T}C_{y}^{-1}L_{p})^{-1}$ "Beamformer" $W = \emptyset$

MR

MRC | Medical Research Council

Phillips et al (2002), Neuroimage

Cognition and

Brain Sciences Unit

Inverse Problem: Equivalent PEB

MRC Cognition and Brain Sciences Unit

Parametric Empirical Bayesian (PEB) 2-level hierarchical form:

 $\mathbf{Y} = \mathbf{L}\mathbf{J} + \mathbf{E}^{(e)} \qquad \mathbf{E}^{(e)} \sim N(0, \mathbf{C}^{(e)})$ $\mathbf{J} = \mathbf{0} + \mathbf{E}^{(j)} \qquad \mathbf{E}^{(j)} \sim N(0, \mathbf{C}^{(j)})$

Likelihood:

$$p(\mathbf{Y} | \mathbf{J}) = N(\mathbf{L}\mathbf{J}, \mathbf{C}^{(e)})$$

Prior:

 $p(\mathbf{J}) = N(0, \mathbf{C}^{(j)})$

Posterior:

 $p(\mathbf{J} | \mathbf{Y}) \propto p(\mathbf{Y} | \mathbf{J}) p(\mathbf{J})$

Maximum A Posteriori (MAP) estimate:

$$\hat{\mathbf{J}} = \mathbf{C}^{(j)} \mathbf{L}^T [\mathbf{L} \mathbf{C}^{(j)} \mathbf{L}^T + \mathbf{C}^{(e)}]^{-1} \mathbf{Y}$$

cf Classical Tikhonov:

 $(\mathbf{W}^T\mathbf{W})^{-1}\mathbf{L}^T[\mathbf{L}(\mathbf{W}^T\mathbf{W})^{-1}\mathbf{L}^T+\lambda\mathbf{C}^{(e)}]^{-1}\mathbf{Y}$

 $C^{(e)} = n \times n$ Sensor (error) $C^{(i)} = p \times p$ Source (prior) covariance

$$\Rightarrow$$
 C^(j) = (**W**^T**W**)⁻¹

Phillips et al (2005), Neuroimage

Inverse Problem: Covariance Components (Priors)

MRC Cognition and Brain Sciences Unit

Specifying (co)variance components (priors/regularisation):

$$\mathbf{C} = \sum_{i} \lambda_{i} \mathbf{Q}_{i}$$

- C = Sensor/Source covariance
- **Q** = Covariance components
- λ = Hyper-parameters

1. Sensor components, $\mathbf{Q}_{i}^{(e)}$ (error):

"IID" (white noise):

Empty-room:

sensors

2. Source components, $\mathbf{Q}_{i}^{(j)}$ (priors/regularisation):

"IID" (min norm):

Multiple Sparse Priors (MSP):

Friston et al (2008) Neuroimage

Inverse Problem: HyperPriors

When multiple Q's are correlated, estimation of hyperparameters λ can be difficult (eg local maxima), and they can become negative (improper for covariances)

To overcome this, one can:

1) impose positivity on hyperparameters:

 $\alpha_i = \ln(\lambda_i) \Leftrightarrow \lambda_i = \exp(\alpha_i)$

2) impose weak, shrinkage hyperpriors:

$$p(\boldsymbol{\alpha}) \sim N(\boldsymbol{\eta}, \boldsymbol{\Omega})$$
 $\boldsymbol{\eta} = -4$ $\boldsymbol{\Omega} = a\mathbf{I}, a = 16$

uninformative priors are then "turned-off" (cf. "Automatic Relevance Detection")

$$\alpha \to -\infty \Leftrightarrow \lambda \to 0$$

Henson et al (2007) Neuroimage

Inverse Problem: HyperPriors

When multiple Q's are correlated, estimation of hyperparameters λ can be difficult (eg local maxima), and they can become negative (improper for covariances)

To overcome this, one can:

1) impose positivity on hyperparameters:

 $\alpha_i = \ln(\lambda_i) \Leftrightarrow \lambda_i = \exp(\alpha_i)$

2) impose weak, shrinkage hyperpriors:

 $p(\boldsymbol{\alpha}) \sim N(\boldsymbol{\eta}, \boldsymbol{\Omega})$ $\boldsymbol{\eta} = -4$ $\boldsymbol{\Omega} = a\mathbf{I}, a = 16$

uninformative priors are then "turned-off" (cf. "Automatic Relevance Detection") $\alpha \rightarrow -\infty \Leftrightarrow \lambda \rightarrow 0$

Henson et al (2007) Neuroimage

Inverse Problem: Full (DAG) model

MRC Cognition and Brain Sciences Unit

Source and sensor space

Friston et al (2008) Neuroimage

MRC | Medical Research Council

Inverse Problem: Estimation

 Obtain Restricted Maximum Likelihood (ReML) estimates of the hyperparameters (λ) by maximising the variational "free energy" (F):

$$\hat{\boldsymbol{\lambda}} = \max_{\boldsymbol{\lambda}} p(\mathbf{Y} \mid \boldsymbol{\lambda}) = \max_{\boldsymbol{\lambda}} F$$

2. Obtain Maximum A Posteriori (MAP) estimates of parameters (sources, J):

$$\hat{\mathbf{I}} = \max_{j} p(\mathbf{J} \mid \mathbf{Y}, \hat{}) = \max_{j} F$$

3. Maximal F approximates Bayesian (log) "model evidence" for a model, *m*:

$$\ln p(\mathbf{X} \mid m) = \lim \int p(\mathbf{Y}, \mathbf{G}, \mathbf{\Sigma} \mid m) d \quad d \quad \approx F(\ , \ , \) \qquad m = \{\mathbf{h}, \mathbf{Q}, \ , \ \}$$

$$F(\boldsymbol{\chi},\boldsymbol{\Sigma},\hat{\boldsymbol{\chi}}) \propto -\boldsymbol{\mathcal{G}}(\boldsymbol{Y}\boldsymbol{Y}^{T}) - \boldsymbol{\mathbb{I}}\boldsymbol{\mathbb{C}} | \boldsymbol{\mathcal{G}}(\hat{\boldsymbol{\eta}} \quad \boldsymbol{\mathcal{Y}}^{T} \quad \boldsymbol{\bar{\alpha}}^{1}(\hat{\boldsymbol{\eta}} \quad \boldsymbol{\boldsymbol{\eta}} + \boldsymbol{\mathbb{I}}\boldsymbol{\Sigma}\boldsymbol{\boldsymbol{\Omega}}^{\hat{\boldsymbol{\chi}}^{-1}} | \boldsymbol{\boldsymbol{\Omega}}$$
Accuracy
Complexity

(...where \hat{a} and $\hat{\Sigma}$ are the posterior mean and covariance of hyperparameters)

Friston et al (2002) Neuroimage

Cognition and

Inverse Problem: Multiple Sparse Priors

MRC Cognition and Brain Sciences Unit

Hyperpriors allow the extreme of 100's source priors, or MSP

$$G(\sigma) = [q_1, \dots, q_N] = \sum_{i=0}^{8} \frac{\sigma^i}{i!} A^i \approx \exp(\sigma A)$$

sources

#

sources

Hyperpriors allow the extreme of 100's source priors, or MSP

Friston et al (2008) Neuroimage

Inverse Problem: PEB Summary

Summary:

- Automatically "regularises" in principled fashion...
- ...allows for multiple constraints (priors)...
- ...to the extent that multiple (100's) of sparse priors possible (MSP)...
- ...(or multiple error components or multiple fMRI priors)...
- ... furnishes estimates of model evidence, so can compare constraints

- 1. Forward Models for M/EEG
- 2. Variational Bayesian Dipole Estimation (ECD)
- 3. Empirical Bayesian Distributed Estimation
- 4. Multi-modal and multi-subject integration

Multi-subject Integration (Group Inversion)

MRC Cognition and Brain Sciences Unit

Specifying (co)variance components (priors/regularisation):

$$\mathbf{C} = \sum_{i} \lambda_{i} \mathbf{Q}_{i}$$

- *C* = Sensor/Source covariance
- Q = Covariance components
- λ = Hyper-parameters

1. Sensor components, $Q_i^{(e)}$ (error):

"IID" (white noise):

Empty-room:

2. Source components, $Q_i^{(j)}$ (priors/regularisation):

"IID" (min norm):

Multiple Sparse Priors (MSP):

Friston et al (2008) Neuroimage

Multi-subject Integration (Group Inversion)

MRC Cognition and Brain Sciences Unit

Specifying (co)variance components (priors/regularisation):

 $\mathbf{C} = \sum_{i} \lambda_{i} \, \mathbf{Q}_{i}$

- *C* = Sensor/Source covariance
- Q = Covariance components
- λ = Hyper-parameters

1. Sensor components, $Q_i^{(e)}$ (error):

"IID" (white noise):

sensors

2. Optimise Multiple Sparse Priors by pooling across subjects $Q_i^{(j)}$

Multi-subject Integration (as before)

Source and sensor space

Multi-subject Integration

Multi-subject Integration: Leadfield Alignment

MRC Cognition and Brain Sciences Unit

Concatenate data across subjects

$$\begin{bmatrix} \tilde{\mathbf{A}}_{1} \tilde{\mathbf{Y}}_{1}, \dots, \tilde{\mathbf{A}}_{s} \tilde{\mathbf{Y}}_{s} \end{bmatrix} = \begin{bmatrix} \tilde{\mathbf{A}}_{1} \tilde{\mathbf{L}}_{1}, \dots, \tilde{\mathbf{A}}_{s} \tilde{\mathbf{L}}_{s} \end{bmatrix} \begin{bmatrix} \mathbf{J}_{1} \\ \mathbb{X} \\ \mathbf{J}_{s} \end{bmatrix} + \begin{bmatrix} \mathbf{E}_{1}^{(1)}, \dots, \mathbf{E}_{s}^{(1)} \end{bmatrix}$$

...having projected to an "average" leadfield matrix

$$\mathbf{A}_{i}\mathbf{L}_{i} = \mathbf{\tilde{L}}: \mathbf{\tilde{L}} = \langle \mathbf{A}_{i}\mathbf{L}_{i} \rangle_{i} \quad s.t.: \quad \mathbf{A}_{i} = \max \arg \left\{ |\mathbf{\tilde{L}}\mathbf{\tilde{L}}^{T}| \right\}: tr(\mathbf{\tilde{L}}\mathbf{\tilde{L}}^{T}) = n$$

Common source-level priors:

$$\mathbf{C}^{(j)} = \sum \lambda_k^{(j)} \mathbf{Q}_k^{(j)}$$

Subject-specific sensor-level priors:

$$\mathbf{C}_{i}^{(e)} = \sum \lambda_{ik}^{(e)} \mathbf{A}_{i} \mathbf{Q}_{k}^{(e)} \mathbf{A}_{i}^{T}$$

Multi-subject Integration: Results

MRC Cognition and Brain Sciences Unit

MMN

SPM {T₁₀}

MSP

SPM {T₁₀}

MSP (Group)

- 1. Symmetric integration (fusion) of MEG + EEG
- 2. Asymmetric integration of M/EEG + fMRI
- 3. Full fusion of M/EEG + fMRI?

Daunizeau et al (2007), Neuroimage

MRC | Medical Research Council

Daunizeau et al (2007), Neuroimage

1. Symmetric integration (fusion) of MEG + EEG

- 2. Asymmetric integration of M/EEG + fMRI
- 3. Full fusion of M/EEG + fMRI?

Symmetric Integration of MEG+EEG

MRC Cognition and Brain Sciences Unit

Specifying (co)variance components (priors/regularisation):

$$\mathbf{C} = \sum_{i} \lambda_{i} \mathbf{Q}_{i}$$

- C = Sensor/Source covariance $p(\mathbf{X}) = N(\mathbf{m}, \mathbf{C})$ Q = Covariance components
- λ = Hyper-parameters

1. Sensor components, $\mathbf{Q}_{i}^{(e)}(\text{error})$:

"IID" (white noise):

Empty-room:

2. Source components, $\mathbf{Q}_{i}^{(j)}$ (priors/regularisation):

Friston et al (2008) Neuroimage

Symmetric Integration of MEG+EEG

MRC Cognition and Brain Sciences Unit

Specifying (co)variance components (priors/regularisation):

$$\mathbf{C}_{i}^{(e)} = \sum_{j} \lambda_{ji}^{(e)} \mathbf{Q}_{ij}^{(e)}$$

1. Sensor components, $\mathbf{Q}_{ij}^{(e)}$ (error):

E.g, white noise for 2 modalities:

 $Q_{ij} = j$ th component for *i*th modality $\lambda_{ii} =$ Hyper-parameters

2. Source components, $\mathbf{Q}_{i}^{(j)}$ (priors/regularisation):

Multiple Sparse Priors (MSP):

Single Modality (as before)

Source and sensor space

MRC | Medical Research Council

Symmetric Integration of MEG+EEG

• Stack data and leadfields for *d* modalities:

(note: common sources and source priors, but separate error components)

• Where data / leadfields scaled to have same average / predicted variance:

$$\dot{Y}_{i} = \frac{Y_{i}}{\sqrt{\frac{1}{m_{i}}tr(Y_{i}Y_{i}^{T})}} \qquad \tilde{L}_{i} = \frac{L_{i}}{\sqrt{\frac{1}{m_{i}}tr(L_{i}L_{i}^{T})}} \qquad m_{i} = \text{Number of spatial modes}$$
(e.g, ~70% of #sensors)

ERs from 12 subjects for 3 simultaneously-acquired Neuromag sensor-types:

MRC | Médical Research Council

Symmetric Integration of MEG+EEG

MRC Cognition and Brain Sciences Unit

Faces - Scrambled, 150-190ms

EEG

IID noise for each modality; common MSP for sources (fixed number of spatial+temporal modes)

Symmetric Integration of MEG+EEG

MRC Cognition and Brain Sciences Unit

- Fusing magnetometers, gradiometers and EEG increased the conditional precision of the source estimates relative to inverting any one modality alone (when equating number of spatial+temporal modes)
- The maximal sources recovered from fusion were a plausible combination of the ventral temporal sources recovered by MEG and the lateral temporal sources recovered by EEG
- (Simulations show the relative scaling of mags and grads agrees with empty-room data)

1. Symmetric integration (fusion) of MEG + EEG

- 2. Asymmetric integration of M/EEG + fMRI
- 3. Full fusion of M/EEG + fMRI?

MRC Cognition and Brain Sciences Unit

Specifying (co)variance components (priors/regularisation):

$$\mathbf{C} = \sum_{i} \lambda_{i} \mathbf{Q}_{i}$$

C = Sensor/Source covariance $p(\mathbf{X}) = N(\mathbf{m}, \mathbf{C})$ Q = Covariance components

 λ = Hyper-parameters

1. Sensor components, $Q_i^{(e)}$ (error):

"IID" (white noise):

2. Source components, $Q_i^{(j)}$ (priors/regularisation):

"IID" (min norm):

Multiple Sparse Priors (MSP):

Friston et al (2008) Neuroimage

MRC Cognition and Brain Sciences Unit

Specifying (co)variance components (priors/regularisation):

 $\mathbf{C} = \sum_{i} \lambda_{i} \mathbf{Q}_{i}$

C = Sensor/Source covariance $p(\mathbf{X}) = N(\mathbf{m}, \mathbf{C})$ Q = Covariance components λ = Hyper-parameters

1. Sensor components, $Q_i^{(e)}(\text{error})$:

"IID" (white noise):

sensors

2. Each suprathreshold fMRI cluster becomes a separate prior $Q_i^{(j)}$

"IID" (min norm):

MRC Cognition and Brain Sciences Unit

Source and sensor space

MRC | Medical Research Council

MRC Cognition and Brain Sciences Unit

Henson et al (2010) Hum. Brain Map.

Cognition and

MRC Cognition and Brain Sciences Unit

SPM{F} for faces versus scrambled faces, 15 voxels, p<.05 FWE

5 clusters from SPM of fMRI data from separate group of (18) subjects in MNI space

MRC Cognition and Brain Sciences Unit

(binarised, variance priors)

MRC | Medical Research Council

MRC Cognition and Brain Sciences Unit

(binarised, variance priors)

MRC | Medical Research Council

MRC Cognition and Brain Sciences Unit

(binarised, variance priors)

MRC | Medical Research Council

3.2 Fusion of MEG+fMRI (Application)

MRC Cognition and Brain Sciences Unit

(binarised, variance priors)

MRC | Medical Research Council

MRC Cognition and Brain Sciences Unit

(binarised, variance priors)

MRC Cognition and Brain Sciences Unit

IID sources and IID noise (L2 MNM)

None

MRC Cognition and Brain Sciences Unit

IID sources and IID noise (L2 MNM)

Gradiometers

Electrodes

None

Global

3.2 Fusion of MEG+fMRI (Application)

MRC Cognition and Brain Sciences Unit

IID sources and IID noise (L2 MNM)

fMRI priors counteract superficial bias of L2-norm

MRC Cognition and Brain Sciences Unit

IID sources and IID noise (L2 MNM)

fMRI priors counteract superficial bias of L2-norm

MRC Cognition and Brain Sciences Unit

NB: Priors affect variance, not precise timecourse...

MRC | Medical Research Council

- Adding a single, global fMRI prior increases model evidence
- Adding multiple valid priors increases model evidence further Helpful if some fMRI regions produce no MEG/EEG signal (or arise from neural activity at different times)
- Adding invalid priors does not necessarily increase model evidence, particularly in conjunction with valid priors
- Can counteract superficial bias of, e.g, minimum-norm
- Affects variance but not not precise timecourse

- 1. Symmetric integration (fusion) of MEG + EEG
- 2. Asymmetric integration of M/EEG + fMRI
- 3. Full fusion of M/EEG + fMRI?

Fusion of fMRI and MEG/EEG?

Henson (2010) Biomag

Fusion of fMRI and MEG/EEG?

MRC Cognition and Brain Sciences Unit

Fixed Variable

Fusion of fMRI and MEG/EEG?

Cognition and Brain Sciences Unit MRC

Overall Conclusions

- SPM offers standard forward models (via FieldTrip)... (though with unique option of Canonical Meshes)
- 2. ...but offers unique Bayesian approaches to inversion:
 - 2.1 Variational Bayesian ECD
 - 2.2 Dynamic Causal Modelling (DCM)
 - 2.3 A PEB approach to Distributed inversion (eg MSP)
- 3. PEB framework in particular offers multi-subject and (various types of) multi-modal integration

The End

MRC | Medical Research Council

Forward Problem: Physics

Cognition and

Brain Sciences Unit

MRC
Inverse Problem: Simulations

MRC Cognition and Brain Sciences Unit

Multiple constraints: Smooth sources (Q_s) , plus valid (Q_v) or invalid (Q_i) focal prior

Mattout et al (2006)

Inverse Problem: Simulations

MRC Cognition and Brain Sciences Unit

Multiple constraints: Smooth sources (Q_s) , plus valid (Q_v) or invalid (Q_i) focal prior

	Log-Evidence	Bayes Factor
Q _s	205.2	7047
Q _s ,Q _v	214.1	
Q _s , Q _v , Q _i	214.7	
(Q _s ,Q _i)	204.9	(1/9899)

Mattout et al (2006)

Inverse Problem: Temporal

$$\widetilde{Y} = LJ + E \qquad \begin{array}{c} E \sim N(0, V^{(e)} \otimes C^{(e)}) \\ J \sim N(0, V^{(j)} \otimes C^{(j)}) \end{array}$$

 $C^{(e)}$ = spatial error covariance over sensors $V^{(e)}$ = temporal error covariance over sensors $C^{(j)}$ = spatial error covariance over sources $V^{(j)}$ = temporal error covariance over sources

Cognition and Brain Sciences Unit

In general, temporal correlation of signal (sources) and noise (sensors) will differ, but can project onto a temporal subspace (via S) such that:

$$S^T V_e S = S^T V_j S = S^T V S$$

V typically Gaussian autocorrelations...

 $V = KK^{T}$ $K(\tau)_{ij} = \exp\left(-\frac{(i-j)^{2}}{2\tau^{2}}\right)$ $\tau \sim 4ms$

then turns out that EM can simply operate on prewhitened data (covariance), where Y size *n x t*:

$$\hat{\lambda} = EM(\frac{1}{N_r}YS(S^TVS)^{-1}S^TY^T, Q)$$
$$\hat{J} = MYSS^T$$

Friston et al (2006)

Inverse Problem: Temporal

MRC Cognition and Brain Sciences Unit

Friston et al (2006)

true source

MRC | Medical Research Council

3.2. Fusion of MEG+fMRI

Cognition and Brain Sciences Unit

MRC

fMRI hyperparameters

Multi-subject Integration: Results

MRC Cognition and Brain Sciences Unit

MMN + 3 fMRI priors

<

MMN + 3 fMRI priors (Group)

Henson et al (2011) Frontiers