Practical Data
Compression for Memory
Hierarchies and
Applications

Gennady Pekhimenko

Assistant Professor

Computer Systems and Networking Group (CSNG)
EcoSystem Group

% UNIVERS
J TORONTO

Performance and Energy Efficiency

Applications today are data-intensive

~ amazon
DynamoDB

Databases Graphics

Computation vs. Communication

Modern memory systems are
bandwidth constrained

Data movement is very costly

— Integer operation: ~1 pJ

— Floating operation: ~20 p)J

— Low-power memory access: ~“1200 p)J
Implications

— Y% bandwidth of modern mobile phone memory
exceeds power budget

— Transfer less or keep data near processing units

Data Compression across the System

Ko D10] o\
1010 1010 1010
9 0) 0) 0

Processor

Cache

Software vs. Hardware Compression

Software vs. Hardware

Layer Disk Cache/Memory

Latency milliseconds nanoseconds

Algorithms Dictionary-based Arithmetic

Existing dictionary-based algorithms are too slow
for main memory hierarchies 5

Key Challenges for Compression in
Memory Hierarchy

* Fast Access Latency

* Practical Implementation and Low Cost

* High Compression Ratio

Practical Data Compression in Memory

Processor

3.

4.
Compression 2016

1. Cache Compression

: mpre%&n

ache Replacemen
HPCA D
2015

Memory Compression

MICRO
s L

Bandwidth Hpca .

7

1. Cache Compression

Background on Cache Compression

Hit Hit
(3-4 cycles) (~15 cycles)

L2
Cache

Uncompressed Pr€ss1on Compressed

* Key requirement:
— Low decompression latency

>

Key Data Patterns in Real Applications

Zero Values: initialization, sparse matrices, NULL pointers

0x00000000 | 0x00000000 | 0x00000000 | 0x00000000 _

Repeated Values: common initial values, adjacent pixels

0x000000€0 | 0x000000€0 | 0x000000€0 | 0x000000€0 | ...

Narrow Values: small values stored in a big data type

0x000000€0 | 0x000000€8 | 0x000000D0 | 0x000000D8 _

Other Patterns: pointers to the same memory region

0xC04039€0 | 0xC04039€8 | 0xC04039D0 | OxC04039D8 | ...

How Common Are These

Patterns?
SPEC2006, databases, web workloads, 2MB L2 cache

“Other Patterns” include Narrow Values

o~ 100%
o
o 800, =Zero
S’ ()
o *Repeated Values
D 609 +-Other Patterns
o 43%
> 400
5 40%
O
@ 20%
S B
8 0% e
SRED QR P XL LD O dgF & LS RDQ &
S QLI SIR G P S LB ¥ D@ SO o8
\),b('\“ < (9\6‘0@ \9@@@0& Q¥ -&K@Q\\Ib&@@ > 0)60(9& S &b@%@ (30 .“@ﬁ\
"00‘ O '& S) Q)(; QJ@ O
S + Fe ¥

43% of the cache lines belong to key patterns 11

Key Data Patterns in Real Applications

Zero Values: initialization, sparse matrices, NULL pointers

0x00000000 | 0x00000000 | 0x00000000 | 0x00000000 _

Repeated Values: common initial values, adjacent pixels

0x000000€0 | 0x000000€0 | 0x000000€0 | 0x000000€0 | ...

Narrow Values: small values stored in a big data type

0x000000€0 | 0x000000€8 | 0x000000D0 | 0x000000D8 _

Other Patterns: pointers to the same memory region

0xC04039€0 | 0xC04039€8 | 0xC04039D0 | OxC04039D8 | ...

Key Data Patterns in Real Applications

Low Dynamic Range:
Differences between values are significantly

smaller than the values themselves

* Low Latency Decompressor
* Low Cost and Complexity Compressor
* Compressed Cache Organization

13

Key Idea: Base+Delta (B+A) Encoding

4 bytes

32-byte Uncompressed Cache Line

0xC04039C0 | 0xC04039C8 | 0xC04039D0 | ... | OxC04039F8
0xCO403¢

12-byte

Compressed Cache Line

1 byte 1byte 1 byte

20 bytes saved
v/ Effective: good compression ratio

14

B+A Decompressor Design

Compressed Cache Line

Uncompressed Cache Line

¢/ Fast Decompression: 1-2 cycles
15

Can We Get Higher Compression Ratio?

* Uncompressible cache line (with a single base):

0x09A40178 | 0x00000000 | 0x09A4A838 | 0x00000008 _

struct A {
int* next;
* Key idea - use more bases int count;};

— More cache lines can be compressed
— Unclear how to find these bases efficiently
— Higher overhead (due to additional bases)

16

B+A with Multiple Arbitrary Bases

c 18 fb
of bases
.2 1.7 is fixed
)
N
)
el
Q .
38
Uq.z - -

v’ 2 bases — empirically the best option

17

How to Find Two Bases Efficiently?

1. First base - first element in the cache line

¢/ Base+Delta part

2. Second base - implicit base of 0

¢ Immediate part
Base-Delta-Immediate (BAl) Compression

18

BAI Cache Organlzatlon

T'ag0

Way, Way, Way, Way,

BAI: 4-way cache with 8-byte segmented data

b
Tag Storage: 8 bytes

Set

SEtl Tago

Way, Way, Way, Way,

‘ l giags %Lphd%ouqmmadjéceﬂtlv&meha ‘ 19

E(\o

Comparison Summary

Prior Work vs. BAI

Comp. Ratio 1.51 1.53
Decompression 5-9 cycles 1-2 cycles
Compression 3-10+ cycles 1-9 cycles

Average performance of a twice larger cache
20

1. Cache Compression

2. Compression and
Cache Replacement

3. Memory Compression

4. Bandwidth
Compression

21

HPCA
2015

2. Compression and Cache Replacement

22

Cache Management Background

* Not only about size
— Cache management policies are important

— Insertion, promotion and eviction

23

Block Size Can Indicate Reuse

e Sometimes there is a relation between the
compressed block size and reuse distance

compressed }
[data block size

structure
reuse
distance

* This relation can be detected through the
compressed block size

* Minimal overhead to track this relation (compressed
block information is a part of design)

24

Code Example to Support Intuition

int A[N]; // small indices: compressible
double B[16]; // FP coefficients: incompressible
for (int i=0; i<N; i++) {
intidx =Ali];]« long reuse, compressible
for (int j=0; j<N; j++) {
sum += B[(idx+j)%16];]
} A

} short reuse, incompressible

Compressed size can be an indicator of reuse distance

Block Size Can Indicate Reuse
bzip2

Reuse Distance
(# of memory accesses)

|
|
4 ?
0 ‘ /t_—l\
1 8 162074 343640

Block size, bytes

Different sizes have different dominant reuse distances

26

Compression-Aware Management
Policies (CAMP)

SIP: MVE:

Size-based Minimal-Value
Insertion Policy Eviction

compressed }

Th¥dueefi
additional

mpression - 2X

INCre &s&
distance

=
-
=
=
=
=

1. Cache Compression

Processor 101€ 1010 1016

=

2. Compression and
o Tol [| |5 LJE Cache Replacement

0ooo 3. Memory Compression

° 4. Bandwidth
V | HDD Compression

28

MICR

2013

3. Main Memory Compression

29

Challenges in Main Memory Compression

1. Address Computation

2. Mapping and Fragmentation

Address Computation

> Cache Line (64B)

uncompressed [, T4, [4 | o,

Address Offset 0 6'4 1'28 (N-1)*64

Compressed
b b] e | b

Page

Address Offset 0 ? ? ?

31

Mapping and Fragmentation

Virtual Page
(4KB) :
‘ ‘ Virtual
\ ‘ Address
Physical
‘ , Address

Physical Page .

-~

(? KB) "~ “Fragmentation

32

Shortcomings of Prior Work

!.
v

Compression
Mechanisms

IBM MXT
[IBM J.R.D. '01]

Shortcomings of Prior Work

v

Compression
Mechanisms

IBM MXT
[IBM J.R.D. '01]

Robust Main
Memory 5 cycles
Compression v v

[ISCA’05]

Shortcomings of Prior Work

Compression
Mechanisms

IBM MXT
[IBM J.R.D. '01]

Robust Main
Memory

Compression
[ISCA’05]

Linearly
Compresse

v

v v

Linearly Compressed Pages (LCP): Key Idea

Uncompressed Page (4KB: 64*64B)

648 | ... | 68

4:1 Compression

LCP sacrifices some compression
ratio in favor of design simplicity

Compressed Data
(1KB) v’ LCP effectively solves challenge 1:

address computation

LCP: Key Idea (2)

Uncompressed Page (4KB: 64*64B)

648 | 648 | 648 | 648 | ... | 648B

Compressed Data
(1KB)

Exception
Storage

Metadata (64B):
? (compressible)

37

LCP Framework Overview

e Page Table entry extension PTE

e compression type and size I

e OS support for multiple page sizes

e 4 memory pools (512B, 1KB, 2KB, 4KB)
e Handling uncompressible data
e Hardware support

e memory controller logic
¢ metadata (MD) cache

Physical Memory Layout

Page Table 4KB
k8 N kB

1KB | 1KB | 1KB | 1KB

512B.¢ 5128

39

LCP Optimizations

* Metadata cache
* Avoids additional requests to metadata
* Memory bandwidth reduction:

1 transfer
64B 648 648 D]]] instead of 4

e Zero pages and zero cache lines
* Handled separately in TLB (1-bit) and in metadata
(1-bit per cache line)

40

Summary of the Results

Prior Work vs. LCP

Comp. Ratio 1.59 1.62

Performance -4% +14%

Energy Consumption +6% -5%

41

]
=Y
=
e
=)
=
e
=)

b1C : ¥ 1. Cache Compression
Processor 101 01 o

2. Compression and
Cache O | 5 LJE Cache Replacement

0ooo 3. Memory Compression
| 0 4. Bandwidth
m V HDD Compression

42

HPCA
2016

CAL
2015

4. Energy-Efficient Bandwidth
Compression

43

Energy Efficiency: Bit Toggles

How energy is spent in data transfers:
Previous data: 0011 New data: 0101

0 Energy = C*V?] Energy:

(1) > Bit Toggles

1

Energy of data transfers (e.g., NoC, DRAM) is
proportional to the bit toggle count

44

Excessive Number of Bit Toggles

Uncompressed Cache Line

OxO0003A00 0x8001D0O00 I 0xO0003A01 0x8001DO008 I

Flit 0

___00000000...00001 | #Toggles =2

Compressed Cache Line (FPC)

_|0x5{0x3A00 _|0x7|8001D000 _[0x5|0x3A01 _ |0x7/8001D008 __1---

5 3A00 7 8001D000 5 1D Flit O

Flit 1

l

101 738001D008 5 3A02 1 Flit 1

___oopoop111|... [139100911000 | # Toggles = 31 45

Toggle-Aware Data Compression

Problem:
* 1.53X effective compression ratio
e 2.19X increase in toggle count

Goal:

* Trade-off between toggle count and
compression ratio

Key Idea:

* Bit toggle count: compressed vs. uncompressed

* Use a heuristic (Energy X Delay or Energy X Delay?
metric) to estimate the trade-off

* Throttle compression to reach estimated trade-off

Practical Data
Compression for Memory
Hierarchies and
Applications

Gennady Pekhimenko

Assistant Professor

Computer Systems and Networking Group (CSNG)
EcoSystem Group

% UNIVERS
J TORONTO

