
1

EAX
A two-pass authenticated encryption mode

Mihir Bellare Phillip Rogaway David Wagner
U.C. San Diego U.C. Davis and U.C. Berkeley

 Chiang Mai University (Thailand)

2

• “Authenticated encryption” (AE) modes of operation
• Encrypt for confidentiality
• Authenticate for integrity

• Goal: “Auth. encryption with associated data” (AEAD)
•Support “associated data” (AD) - e.g., packet headers - that
 should be authenticated but not encrypted

• Additional goals:
• Flexible, general-purpose, suitable for standardization
• Patent-unencumbered
• Provably secure

• Our solution: EAX

Summary of our work

3

1st generation: ad-hoc schemes

• Many schemes proposed and used in practice:
• CBC with xor checksum
• PCBC
• Kerberos: CBC with CRC checksum
• IPSec’s old ESP o AH
• IPSec’s new ESP
• SSL/TLS
• SSH
• IEEE 802.11 WEP
• IAPCBC

• None of these were proven secure

All of these
have security
defects!

4

2nd generation: provable security

• Generic-composition: encrypt-then-authenticate

• Advantages:
+ Provably secure [Bellare,Namprempre] [Krawczyk]
+ Supports associated data: a AEAD scheme
+ Unpatented

• Disadvantages:
- Strict IV requirements if one uses standard enc schemes
- More key material, longer key-setup time
- No standard, no specs

5

3rd generation: One-pass provably secure AE(AD)

• IAPM [Jutla], OCB [Rogaway], XCBC [Gligor, Donescu]

• Advantages:
+ Encrypt and authenticate in one pass
+ Fast: takes about n block-cipher calls to process n blocks of data

• Disadvantages:
- Some modes can’t handle “associated data”
- Some modes are not fully specified
- All are patent-encumbered

• Due to patent concerns, adoption of these modes
 has been limited

6

4th generation: Unpatented two-pass AEAD

• CCM: CTR + CBC-MAC [Whiting, Housley, Ferguson]

• EAX: builds on CTR and OMAC

• CWC: builds on CTR and hash127 [Kohno, Viega, Whiting]

• GCM: builds on CTR and GF(2128) univ hash [Viega, Whiting]

• Caveat: Two-pass modes are typically ~ 2x slower than
 one-pass modes, in software

7

CCM EAX CWC GCM
Provably secure? ✔ ✔ ✔ ✔

Unpatented? ✔ ✔ ✔ ✔

Any length nonce? 🗴 ✔ 🗴 ✔

One key? ✔ ✔ ✔ ✔

On-line? 🗴 ✔ ✔ ✔

Can preprocess
static headers/AD?

🗴 ✔ ✔ ✔

Fully parallelizable? 🗴 🗴 ✔ ✔

Preserves
alignment?

🗴 ✔ ✔ ✔

Fully specified? ✔ ✔ ✔ ✔

Comparison of 4th generation schemes

8

OMAC

[Iwata, Kurosawa]

L = π (0
n)

2L = msb(L)? L<<1 :
 L<<1 ⊕ 0x87
4L = 2(2L)

“Tweaked” OMAC:

OMACk
T(x) =

 OMACk(T || x)

9

Security of
OMAC·

Theorem [slight improvement of [IK]]

Suppose there is an adversary A that attacks OMAC·[E]
using time t and σ blocks worth of queries getting
PRF-advantage Advprf = δ

Then there is an adversary B that attacks E
using time t + tiny and σ + 1 blocks of text and
getting PRP-advantage Advprp = δ – (σ+3)2/2n

OMAC∙[E]

E

10

EAX

input

output

11

EAX2

input

output

12

Auth Encryption with Associated Data (AEAD)

Syntax of an AEAD scheme:

 E: Key × Nonce × Header × Plaintext → Ciphertext
 D: Key × Nonce × Header × Ciphertext → Plaintext ∪ {invalid}

Security of an AEAD scheme:

• Privacy (≈ IND-CPA) next slide

• Integrity (≈ INT-CTXT) following slide

13

Privacy of an AEAD Scheme

A is not allowed to repeat an N-value
(nonces should be unique)

AdvPRIV (A) = Pr[AReal = 1] – Pr[ARand = 1]Π

AEK (M)

Real N H M

N,H

 [RBB],[BDJR],[GM],[R]

Real world

N H M Rand

random stringA

Ideal world

14

Integrity of an AEAD Scheme

A
N H MReal

AdvAUTH (A) = Pr[AReal forges]
N* H* C*

Adversary A forges if it
outputs N* H* C* s.t.

• C* is valid (it decrypts to a
 message, not to invalid)

• There was no earlier query
 N* H* M* that returned C*

Π

EK (M)
N,H

[RBB],[BR],[KY],[GMR],[R]

A is not allowed to repeat an N-value

15

Security of EAX

Theorem
Suppose there is an adversary A that attacks EAX[E]
using time t and σ blocks of chosen text getting
privacy or authenticity Adv = δ .
Then there is an adversary B that attacks E
using time t + tiny and σ + tiny blocks of text and
getting PRP-advantage Advprp = δ – 11σ2/2n .

If you believe that E is a good block cipher,
 you are forced to believe that
 EAX[E] is a good AEAD scheme.

EAX[E]

E

16

Why use EAX?
• EAX is secure

• Provably secure, if underlying block cipher is secure
• Single API for naïve programmers avoids many pitfalls
 (e.g., poor IV handling, encrypt without auth, etc.)

•EAX is easy to use
• One mode of operation provides everything you need
• Nonces need only be non-repeating (don’t need to be random)
• Nonces, headers, and messages can be of any bit length

• EAX is good for performance
• On-line: Can process streaming data on-the-fly
• Can pre-process static headers
• No encodings, no unaligned operations
• Single key minimizes space and key-schedule operations
• Caveat: EAX is 2x slower than IAPM/OCB/XCBC

• EAX is unpatented & free for all uses (as far as we know)

17

Questions?

