Reactive Systems

Reactive vs Blocking

TTTTTT

TTTTTT

When reactive is beneficial?

The key expected benefit of reactive and non-blocking is the ability to scale with
a small, fixed number of threads and less memory. That makes applications more
resilient under load, because they scale in a more predictable way. In order to
observe those benefits, however, you need to have some /atency (including a mix
of slow and unpredictable network I/O). That is where the reactive stack begins to
show its strengths, and the differences can be dramatic.

Reactive Manifesto

Gol Responsive
React To Users

PRINCIPLES Resilient Elastic

Reoct To Fallures React To Load

Method Message Driven

Modules /| Components Interaction

Reactive Manifesto

e Reactive systems are responsive, meaning that they respond in a timely manner, in all possible
circumstances. They focus on providing rapid and consistent response times, establishing reliable
upper bounds so they deliver a consistent quality of service.

e Reactive systems are resilient, meaning that they remain responsive in the face of failure.
Resilience is achieved by the techniques of replication, containment, isolation, and delegation. By
isolating application components from each other, you can contain failures and protect the system
as a whole.

e Reactive systems are elastic, meaning that they stay responsive under varying workloads. This is
achieved by scaling application components elastically to meet the current demand.

e Reactive systems are message-driven, meaning that they rely on asynchronous message passing
between components. This allows you to create loose coupling, isolation, and location transparency.

Reactive technology characteristics

e Data streams: A stream is a sequence of events ordered in time, such as user interactions, REST
service calls, JMS messages, and results from a database.

e Asynchronous: Data stream events are captured asynchronously and your code defines what to do
when an event is emitted, when an error occurs, and when the stream of events has completed.

e Non-blocking: As you process events, your code should not block and perform synchronous calls;
instead, it should make asynchronous calls and respond as the results of those calls are returned.

e Back pressure: Components control the number of events and how often they are emitted. In
reactive terms, your component is referred to as the subscriber and events are emitted by a
publisher. This is important because the subscriber is in control of how much data it receives and
thus will not overburden itself.

e Failure messages: Instead of components throwing exceptions, failures are sent as messages to a
handler function. Whereas throwing exceptions breaks the stream, defining a function to handle
failures as they occur does not.

Reactive Streams initiative

package org.reactivestreams;

public interface Publisher<T> {

void subscribe (Subscriber<? super T> s);

package org.reactivestreams;

public interface Subscriber<T> {
public void onSubscribe (Subscription s);
public void onNext (T t);
public void onError (Throwable t);

public void onComplete();

package org.reactivestreams;
public interface Subscription {

public void request(long n);

public void cancel () ;

package org.reactivestreams;

public interface Processor<T, R> extends Subscriber<T>, Publisher<R> {

}

Project Reactor landscape

?‘:5 EFEERIE
TUBSE S

Project Reactor & Spring WebFlux

Main Project Reactor publishers

e Mono: Returns 0 or 1 element.

e Flux: Returns 0 or more elements. A Flux can be endless, meaning that it can keep emitting
elements forever, or it can return a sequence of elements and then send a completion notification
when it has returned all of its elements.

Monos and fluxes are conceptually similar to futures, but more powerful. When you invoke a function that
returns a mono or a flux, it will return immediately. The results of the function call will be delivered to you
through the mono or flux when they become available.

In Spring WebFlux, you will call reactive libraries that return monos and fluxes and your controllers will return
monos and fluxes. Because these return immediately, your controllers will effectively give up their threads and
allow Reactor to handle responses asynchronously. It is important to note that only by using reactive libraries

can your WebFlux services stay reactive. If you use non-reactive libraries, such as JDBC calls, your code will

block and wait for those calls to complete before returning.

Bpems koauTh!

ReactiveMongoRepository

e Mono<Book> save()
e Flux<Book> saveAll()
e Flux<Book> findByld()

e Mono<Boolean> existsByld()

Reactive
Mongo

e Flux<Book> findAll()

e Flux<Book> findAlIByld()

e Mono<Long> count()

e Mono<Void> delete()

e Mono<Void> deleteByld()
e Mono<Void> deleteAll()

e Flux<Book> insert()

Pure statistics »/d ‘

nchronous calls 2000d 1000u

atling

Get more features with Gatling FrontLine = &> = sync2000d1 000u
» GLOB, 2019-01-21 14:28:21 +04:00, duration : 382 seconds sync2000d1000u

Global Information

m Number of requests

@
®

Number of Requests
a
?

g

Ok
T T T
t < 800 ms 800ms <t< t> 1200 ms failed
1200 ms

» STATISTICS Expand all groups | Collapse all groups

Q) Executions © Response Time (ms)

50th 75th 95th 99th
pcts pcts pct# pcts

Requests + %
s KO+ KO+ Regls+ Max +

Global Information 2160 57840 96% 157.48 1003 1018 1319 8006 60036
sync 2160 57840 96% | 157.48 1003 1018 1320 8006 60036

P ERRORS
Emor¢ Count + | Percentage ¢

i.n.c.AbstractChannel$AnnotatedConnectException: Connection refused: no further information: localhost/127.0.0.1:8080 57657 99684 %
183 0316 %

.c.i. RequestTimeoutException: Request timeout to localhost/127.0.0.

Asynchronous calls 2000d 1000u

atling

Get more features with Gatiing FrontLine

async2000d1000u

d iveA Test2000d1000u

Y

2019-01-21 14:10:03 +04:00,

L

Global Information

m Number of requests

g

Number of Requests

E

T T T
t < 800 ms 800ms <t< t> 1200 ms failed
1200 ms

P STATISTICS Expand all groups | Collapse all groups

®© Response Time (ms)
Requests
Min ¢ 50“1 75“: 95“1 99“: Max+ | Mean#
pcts pcts pcts pcts

Global Information 2000 2003 2004 2005 2022 2267 2004

2000 2003 2004 2005 2022 2267 2004

async

Further reading

Spring Web Reactive:

https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html

https://docs.spring.io/spring/docs/5.0.0.M4/spring-framework-reference/html/web-reactive.html

Detailed Spring WebFlux example:

https://developer.okta.com/blog/2018/09/24/reactive-apis-with-spring-webflux

Spring Security 5 for Reactive applications:

https://www.baeldung.com/spring-security-5-reactive

