Тема 8. Определение себестоимости перевозок по операциям перевозочного процесса

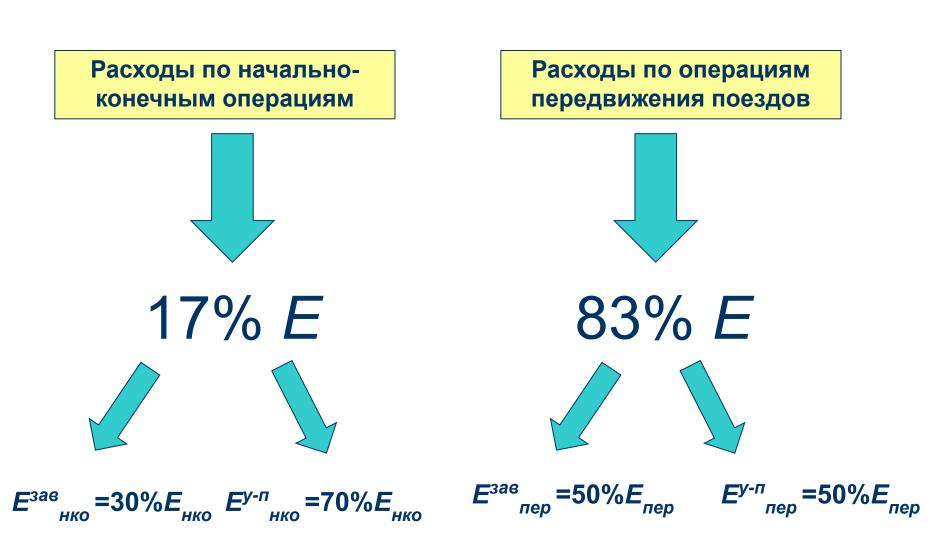
Рекомендуемая литература

Себестоимость железнодорожных перевозок. Под ред. Н.Г. Смеховой и А.И. Купорова - М. Маршрут, 2003 г. (Стр. 343 -353).

Структура лекции

 Расходы по операциям перевозочного процесса

2. Зависимость себестоимости от дальности перевозки


Операции перевозочного процесса

• Начальные и конечные

 Формирование, расформирование и переформирование поездов

• Передвижение поездов

Распределение расходов по операциям перевозочного процесса

Методика расчета себестоимости по операциям Из ходы,

перевозочного процесса (расчет на 1000 ткм нетто)						
вмеритель	EPC,	Расчет	Расході			
	руб.	измерителей	руб.			

Начально-конечные операции (с учетом операций по формированию расформированию поездов)

 e_{nT}

Nотпр

e o

е мтман

Итого зависящих расходов по начально-конечным операциям

Условно-постоянные расходы по начально-конечным операциям

Итого расходов по начально-конечным операциям на 1000 ткм нетто

Вагоно-километры на

маневрах ($nS_{\text{ман}}$)

Количество

отправок (O)

Маневровые

локомотиво-часы

 $(N_{\rm R}^{\rm OT\Pi p})$

 (MT_{MaH})

Вагоно-часы (nT_{MAH})

отправленных вагонов

Количество грузовых

 $nS_{\text{MAH}} = MT_{\text{MAH}} * V_{\text{MAH}} * k_{\text{M}} * n_{\text{II}}$

 $nT_{MAH} = N_{\varepsilon}^{omnp} * t_{\text{гр.оп.}}$

 $MT_{\text{ман}} = N_{e}^{omnp} * t_{\text{ман}}$

 $1000*\gamma_{o}$

 $p_{\rm o}*l_{\rm rp}$

 $1000*\gamma_{0}$

 $p_{\rm ct}^{} l_{{\scriptscriptstyle \Gamma} {\scriptscriptstyle
m p}}$

 $e_{nS}^{MAH} * nS_{MAH}$

e ₀ * 0

МТман

 ΣE^{HKO}

Методика расчета себестоимости по операциямперевозочного процесса (расчет на 100 ткм нетто)ерительEPCРасчет измерителейРасходы

 $nS = ---- *(1 + \alpha_{rp}^{nop})$

 $MS_{_{\Pi UH}} *24$ $S_{_{\Pi}}$

MS, $MT = \frac{MS}{V}$ * $\kappa^{\pi}_{\text{пр.сд}}$

 $T(\Im) = \frac{a_{T(\Im)}}{10^4} * PL_{\text{брв}} * \kappa_{\text{пот}}$

 $PL_{\mathsf{fp}} = PL_{\mathsf{fp}}^{\mathsf{B}} + PL_{\mathsf{fp}}^{\mathsf{I}}$

 $MS=NS*(1+\beta_{od})$

 $\frac{p_{rp}}{nS}$ nT = ---- *24

епоезд

 $e_{nT} * nT$

 $e_{MS}*MS$

 $e_{MT}*MT$

e_{Mh}*Mh

 $e_{Pl}*PL_{\delta p}$

			_				
Измеритель	EPC	Расчет измерителей	Расходь				
Операции по передвижению поездов (с учетом операций по переформированию поездов в пути)							

епоезд

 e_{nT}

 e_{MS}

 e_{MT}

 e_{Mh}

 e_{Pl}

 $e_{T(\mathfrak{I})}$

Вагоно-километры

Вагоно-часы (nT)

Бригадо-часы

(Mh)

Локомотиво-км (MS)

Локомотиво-часы (MT)

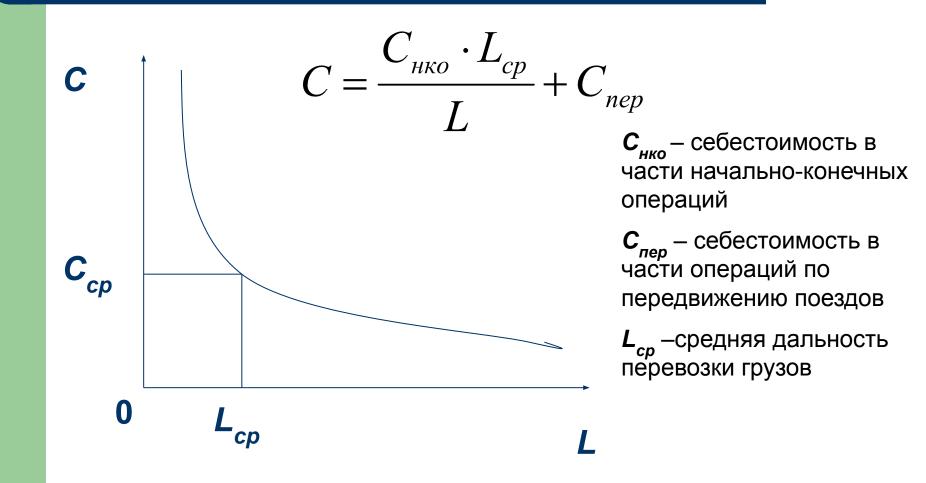
локомотивных бригад

Ткм брутто вагонов и

локомотивов (PL_{50})

(9/энергии) (T(кг))

Расход топлива


(Э (кВт-ч))

noeздax (nS)

Методика расчета себестоимости по операциям перевозочного процесса (расчет на 100 ткм нетто)

Измеритель	ЕРС, руб	Расчет измерителей	Расходы, руб.
Итого зависящих расход	$\Sigma E_{ ext{3aB}}^{ ext{ nep}}$		
Условно-постоянные рас	ΣE_{y-n}^{nep}		
Итого расходов по опера	$\Sigma \mathrm{E}^{\mathrm{nep}}$		
Итого зависящих расход	ОВ	$\Sigma E_{3aB} = + \sum E_{3aB}^{nep}$	Езав
Условно-постоянные рас	ходы	$\sum E_{y-\Pi} = +\sum E_{y-\Pi}^{\text{nep}}$	Е _{у-п}
Всего расходов		$\Sigma E = \Sigma E^{\text{nep}} + \Sigma E^{\text{HKO}}$	ΣΕ
Себестоимость 10 ткм в части начально-конечных операций (коп)		$C_{\text{HKO}} = \frac{\Sigma E_{\text{HKO}}}{1000}$	С
Себестоимость 10 ткм в части операций по передвижению поездов (коп)		$C_{\text{nep}} = \frac{\sum E_{\text{nep}}}{1000}$	Спер

Зависимость себестоимости от дальности перевозки

Зависимость себестоимости от дальности перевозки

При удельном весе расходов по начально-конечным операциям 17%, увеличение дальности перевозки грузов на 10% приведет к увеличению расходов на 8,3% и снижению себестоимости перевозок на 1,5%.

При C=263 коп/10 ткм нетто, L_{ср}=450 км, увеличение дальности перевозки грузов приведет к снижению себестоимости перевозок до 258,9 коп/10 ткм нетто:

$$C = \frac{44,7 \cdot 450}{495} + 218,3 = 258,9 \, \kappa on / 10 \, m \kappa M$$