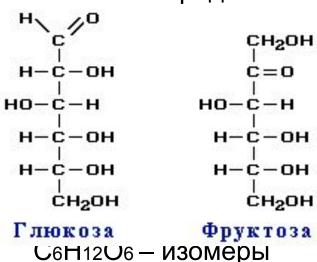
Подготовка к контрольной работе № 2

Алканы	- одинарная связь	CnH2n+2	CH3- CH2 - CH3
Алкены	= двойная связь	CnH2n	CH2 = CH - CH3
Алкадиены (диены)	Две двойных связи	CnH2n-2	CH2 = CH - CH = CH2
Алкины	≡ тройная связь	CnH2n-2	CH ≡ C - CH3
Арены (ароматические углеводороды)	Бензольное ядро	CnH2n-6	нс сн Се Н 6
Спирты	-ОН гидроксил	CnH2n+2O	СН3-ОН
Фенол	-ОН гидроксил	C6H5- OH	ОТОН
Альдегиды	- C= O	CnH2nO	CH3-C= O
	\ H		\ H
Карбоновые кислоты	-СООН карбоксил	CnH2nO2	CH3- COOH
·	'		
Сложные эфиры	-СОО- сложноэфирная	CnH2nO2	CH3- COO - CH3
Простые эфиры	- O -	CnH2n+2O	CH3- O - CH3

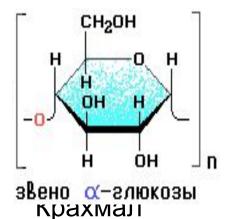
 Гомологи – вещества одного класса (схожее строение и свойства), различающиеся по составу на одну или несколько групп СН₂:

CH₃ – CH₃ и CH₃ – CH₂ – CH₃

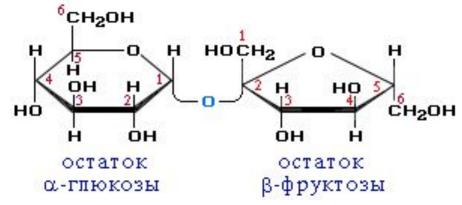
• **Изомеры** – вещества одинакового состава, но разного строения, отличающиеся по свойствам:


CH₃ – CH₂ – CH₂ – OH CH₃ – CH₂ – O – CH₃

У этих двух веществ одинаковый состав СзНвО


Названия органических веществ строятся от названий алканов с тем же числом атомов углерода:

Углеводы


Моносахариды

Полисахариды:

Дисахариды

C₁₂H₂₂O₁₁ – caxapo3a

Жиры. Мыло

• **Жиры** – это сложные эфиры глицерина и высших карбоновых кислот:

Реакция образования жира (реакция этерификации)

- радикалы, входящие в состав высших карбоновых кислот: пальмитиновой (-С15Н31), стеариновой (-С17Н35), олеиновой (-С17Н33), линолевой (-С17Н31) и др.
- **Мыла** натриевые или калиевые соли высших карбоновых кислот: **C**17**H**35**COONa**. Мыла получаются при гидролизе жиров в присутствии щелочей:

Состояние атома углерода (тип гибридизации)

Связи, имеющиеся в углеродном скелете	суффикс	Пример	Тип гибридизации
- одинарная связь	-ан	СН3 - СН2 - СН2 - СН3 Бутан	sp³ Валентный угол 109° 28′
= двойная связь	-ен	CH2 = CH - CH2 - CH3 Бутен-1	sp² Валентный угол 120°
Две двойных связи	- диен	CH2 = CH - CH = CH2 Бутадиен-1,3	sp² Валентный угол 120°
≡ тройная связь	- ин	CH ≡ C - CH2 - CH3 Бутин-1	sp Валентный угол 180°

Характерные реакции углеводородов:

- Для алканов замещение: СНз СНз СНз СНз СНз СН2СІ + НСІ
- Для алкенов, алкадиенов и алкинов присоединение:

$$\underline{C}H \equiv \underline{C}H + H_2 \rightarrow CH_2 = CH_2$$

- Для аренов замещение: $C_6H_6+Cl_2 \xrightarrow{AlCl_3} C_6H_5Cl+HCl$
- Для алкинов возможно замещение:

2HC
$$\equiv$$
C—CH3 + Ag2O \rightarrow 2AgC \equiv C—CH3 \downarrow + H2O 2HC \equiv CH + 2 CuCl \rightarrow 2HCl + CuC \equiv CCu \downarrow

• Для аренов возможно присоединение:

Гидрирование - присоединение водорода	+ H2 →	<u>C</u> H ≡ <u>C</u> H + H ₂ → CH ₂ =CH ₂
Галогенирование	+ Br 2 →	С <u>H</u> ₄ + Cl ₂ → CH ₃ Cl + HCl замещение <u>C</u> H ₂ = <u>C</u> H ₂ + Br ₂ → Br– CH ₂ —CH ₂ – Br Присоединение
Гидрогалогенирование -присоединение галогеноводорода	+ HCl→	$\underline{C}H2=\underline{C}H$ − $CH3$ + HCI → $CH3$ − CH − $CH3$ CI
Гидратация – присоединение воды	+ HOH →	<u>C</u> H ₂ = <u>C</u> H ₂ + HOH → CH ₃ —CH ₂ OH
Гидролиз – разложение вещества водой	+ HOH →	C12H22O11 + HOH → C6H12O6 + C6H12O6 Сахароза глюкоза фруктоза
Дегидрирование - отщепление водорода	→ H2 +	CH3 – C <u>H</u> 2– C <u>H</u> 3 → CH3 – CH=CH2 +H2
Дегидратация - отщепление воды	→ HOH +	$CH3-C\underline{H}2-\underline{OH} \rightarrow CH2 = CH2 + H2O$
Нитрование –введение нитрогруппы NO ₂	+ HONO2 →	$\begin{array}{c} CH_3\text{-}C\underline{H}_3\text{+} \ \underline{HO}NO_2 \ \to \\ CH_3\text{-}CH_2\text{+} \ H_2O \\ & \\ NO_2 \end{array}$
Окисление (неполное)	+ [O] →	$\underline{\mathbf{C}}\mathbf{H}_2 = \underline{\mathbf{C}}\mathbf{H}_2 + [\mathbf{O}] + \mathbf{HOH} \rightarrow \mathbf{HO-CH}_2 - \mathbf{CH}_2 - \mathbf{OH}$
Полимеризация	<i>n</i> → () n	$n \text{ CH}_2 = \text{CH}_2 \rightarrow (\text{—CH}_2 \text{—CH}_2 \text{—})n$
Этерификация – получение сложного эфира	Спирт + кислота	C ₂ H ₅ O <u>H</u> + <u>HO</u> OC-CH ₃ → C ₂ H ₅ -OOC-CH ₃ + H ₂ O

Качественные реакции

• **На алкены, алкины, алкадиены** — обесцвечивание бромной воды:

$$\underline{C}H2=\underline{C}H2 + Br 2 \rightarrow Br-CH2-CH2 - Br$$

обесцвечивание раствора перманганата калия:

$$\underline{C}H_2 = \underline{C}H_2 + [O] + HOH \rightarrow HO-CH_2 - CH_2-OH$$

На многоатомные спирты – растворение голубого осадка Cu(OH)2 и образование синего раствора

На фенол – образование фиолетовой окраски при взаимодействии с FeCls:

с бромной водой (раствор обесцвечивается и выпадает белый осадок):

Качественные реакции

На альдегиды – реакция серебряного зеркала:

CH3-CH=O + Ag2O
$$\rightarrow$$
 CH3- COOH + 2Ag

Образование красного осадка при нагревании с Cu(OH)₂:

CH₃ - CH=O + 2Cu(OH)₂
$$\rightarrow$$
 CH₃- COOH + Cu₂O + 2H₂O

На глюкозу – растворение голубого осадка Cu(OH)2 без нагревания:

$$H = C - OH + O + C - OH + C$$

глицерат меди (ярко-синего цвета)

реакция серебряного зеркала:

- Образование красного осадка при нагревании с $Cu(OH)_2$:

На крахмал – образование синего окрашивания при добавлении йода

• Именные реакции:

Реакция Кучерова – получение уксусного альдегида (ацетальдегида) гидратацией ацетилена (этина):

CH
$$\equiv$$
 CH + HOH \rightarrow CH2=CH \rightarrow CH3 —C =O изомеризация \ OH H

Реакция Вюрца – получение алканов из галогенпроизводных: CH₃- CI + 2 Na + CI -CH₃ → 2 NaCI + CH₃- CH₃

• Правило Марковникова — при присоединении молекул галогеноводородов и других водородсодержащих веществ несимметричного строения к молекулам непредельных углеводородов водород присоединяется к наиболее гидрогенизированному атому углерода:

$$\underline{C}H_2=CH-CH_3+\underline{H}CI \rightarrow CH_3-CH-CH_3$$

Полимеры:

• Получение полиэтилена, полипропилена:

n CH2=CH2
$$\rightarrow$$
 (—CH2—CH2—)n полиэтилен n CH2=CH—CH3 \rightarrow n CH2=CH \rightarrow (—CH2—CH—)n полипропилен $\begin{vmatrix} & & & \\ & & \\ & & &$

• Получение синтетических каучуков:

$$nCH_2=CH-CH=CH_2 \rightarrow (-CH_2-CH=CH-CH_2-)_n$$
 каучук бутадиеновый

- Природные полимеры биополимеры (C6H10O5)n- целлюлоза и крахмал
- Получение искусственных полимеров химической обработкой природных полимеров (биополимеров):

 $[C_6H_7O_2(OH)_3]n + 3nCH_3COOH \rightarrow [C_6H_7O_2(OCOCH_3)_3]n + 3nH_2O$

триацетат целлюлозы – сырье для производства искусственного волокна – ацетатного шелка