

УЧЕБНЫЙ ВОЕННЫЙ ЦЕНТР при ИВАНОВСКОМ ГОСУДАРСТВЕННОМ ЭНЕРГЕТИЧЕСКОМ УНИВЕРСИТЕТЕ имени В.И. ЛЕНИНА

TEMA Nº1 3AHЯТИЕ №10

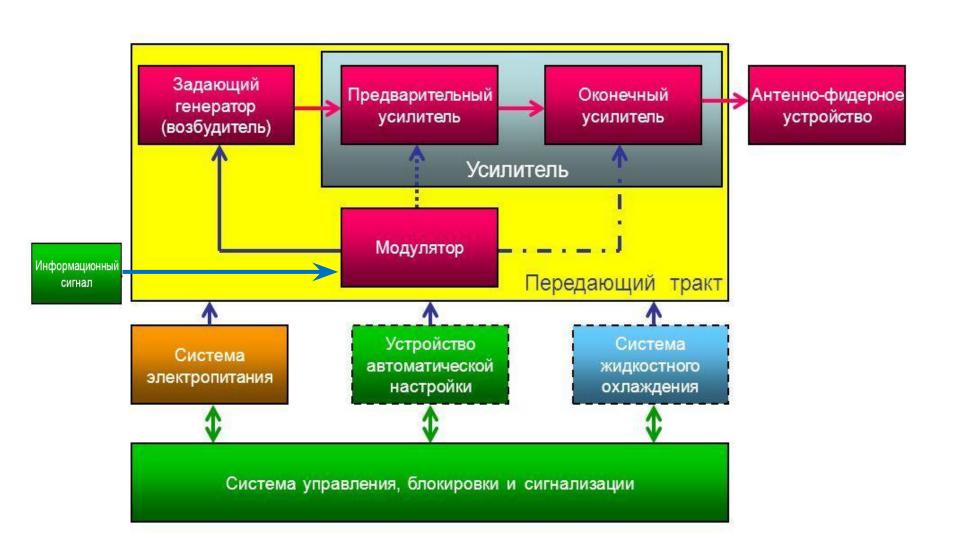
ОСНОВЫ ТЕЛЕКОММУНИКАЦИЙ УСТРОИСТВА ПЕРЕДАЧИ СООБЩЕНИЙ

УЧЕБНЫЕ ВОПРОСЫ

1. РАДИОПЕРЕДАЮЩИЕ УСТРОЙСТВА.

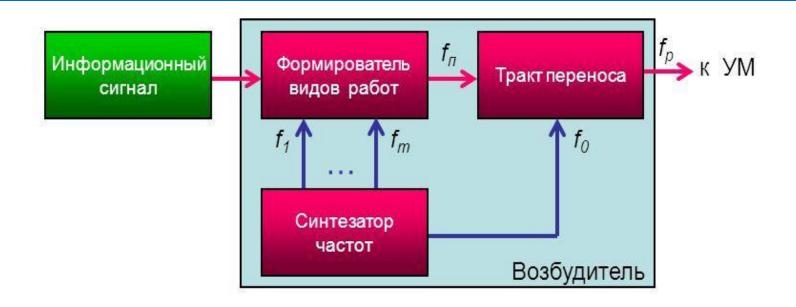
2. СИНТЕЗАТОРЫ СВЕРХВЫСОКИХ ЧАСТОТ.

3. ТЕНДЕНЦИИ РАЗВИТИЯ РАДИОПЕРЕДАЮЩИХ УСТРОЙСТВ.


РАДИОПЕРЕДАЮЩИЕ УСТРОЙСТВА

государственный стандарт союза сср - ГОСТ 24375-80*

- 290 . Радиопередатчик устройство для формирования радиочастотного сигнала, подлежащего излучению
- 293. Выходная мощность радиопередатчика активная мощность, передаваемая радиопередатчиком в антенно-фидерное устройство, или эквивалент нагрузки
- 298. Мощность падающей волны радиопередатчика мощность падающей волны, распространяющейся в фидере в направлении от выхода радиопередатчика к антенне, измеренная в определенном сечении фидера
- 299. Мощность отраженной волны радиопередатчика мощность отраженной волны, распространяющейся в фидере в направлении от антенны к выходу радиопередатчика, измеренная в определенном сечении фидера



РАДИОПЕРЕДАЮЩИЕ УСТРОЙСТВА

РАДИОПЕРЕДАЮЩИЕ УСТРОЙСТВА

РАДИОСВЯЗЬ термины и определения ГОСТ 24375-80

ВОЗБУДИТЕЛЬ РАДИОПЕРЕДАТЧИКА -

устройство радиопередатчика для формирования гармонических колебаний с заданными частотами с помощью одного или нескольких автогенераторов

Примечание. В радиопередатчиках допускается включение модулятора в состав возбудителя.

- назначению;
- диапазону рабочих волн (частот);
- излучаемой мощности;
- виду модуляции сигналов;
- виду излучения;
- условиям эксплуатации.

• **НАЗНАЧЕНИЕ ПЕРЕДАТЧИКА** определяется радиосистемой, в которой он используется, и что связано с видом передаваемой информации.

• ПО ДИАПАЗОНУ РАБОЧИХ ВОЛН современные передатчики делятся в соответствии с классификационной таблицей диапазонов радиоволн и частот.

Различают передатчики: километровых - 10...1км (30...300 кГц);

гектометровых - 1000...100 м (300...3000 кГц);

декаметровых - 100...10 м (3...30 МГц);

метровых - 10...1м (30...300 МГц);

дециметровых - 1...0,1 м (300...3000 МГц).

ПО СРЕДНЕЙ ИЗЛУЧАЕМОЙ МОЩНОСТИ передаваемых

радиосигналов различают передатчики:

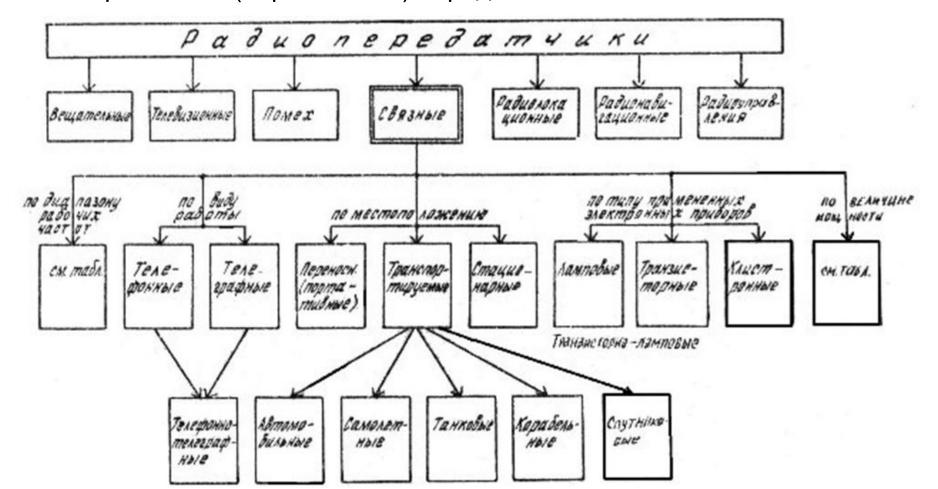
очень малой (менее 3 Вт); малой (3 ... 10 Вт) мощности; средней (10 ...500 Вт) мощности;

большой (0,5 ... 10 кВт) мощности;

сверхбольшой (более 10 кВт) мощности.

государственный стандарт союза сср - ГОСТ 24375-80*

295. Средняя мощность радиопередатчика - выходная мощность нормально работающего радиопередатчика, определяемая как среднее значение мощности за время, превышающее период наименьшей частоты модулирующего сигнала, в течение которого средняя мощность максимальна.


- ПО ВИДУ МОДУЛЯЦИИ СИГНАЛА передатчики делятся на устройства:
- с амплитудной, балансной и однополосной, частотной, фазовой, импульсной, квадратурной, импульсно-кодовой и другими видами модуляции.
- ПО ВИДУ ИЗЛУЧЕНИЯ различают передатчики работающие в непрерывном и импульсном режимах. В первом случае при передаче сообщения сигнал излучается непрерывно, во втором в виде радиоимпульсов.

государственный стандарт союза сср - ГОСТ 24375-80*

292 . Импульсный радиопередатчик - радиопередатчик с импульсной модуляцией несущей

• ПО УСЛОВИЯМ ЭКСПЛУАТАЦИИ различают стационарные, бортовые (космические, корабельные, самолетные, автомобильные) и переносные (портативные) передатчики.

- •ДИАПАЗОН РАБОЧИХ ЧАСТОТ fmun.—fmakc., выделяемых для передатчика, определяется условиями организации радиосвязи, её дальностью, реальной занятостью некоторых участков радиочастотного спектра специальными службами (вещанием, телевидением, радионавигацией и пр.), эффективностью антенных устройств и их габаритами, шириной полосы частот радиосигнала, требуемым количеством рабочих частот и т.д.
- •СТАБИЛЬНОСТЬ ЧАСТОТЫ. Высокая стабильность частоты излучаемых колебаний диктуется также требованиями беспоискового вхождения в связь и бесподстроечного ведения связи. Наиболее жёсткие требования по стабильности частоты предъявляются к однополосным передатчикам и передатчикам с возможностью многоканальной работы.

государственный стандарт союза сср - ГОСТ 24375-80*

304. Абсолютная нестабильность частоты радиопередатчика. (Нестабильность частоты передатчика) - отклонение частоты колебаний на выходе радиопередатчика за определенный промежуток времени относительно установленной частоты.

$$\Delta f = f_{\rm H} - f_{\rm HOM.}$$

305. Относительная нестабильность частоты радиопередатчика отношение абсолютной нестабильности частоты радиопередатчика к установленной частоте радиопередатчика.

$$\delta_f = \frac{\Delta f}{f_{\text{HOM}}}$$
.

306. Допустимое отклонение частоты радиопередатчика Допустимое отклонение частоты - максимально допустимое отклонение средней частоты полосы частот, занимаемой излучением радиопередатчика, от присвоенной частоты

• КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ (КПД),

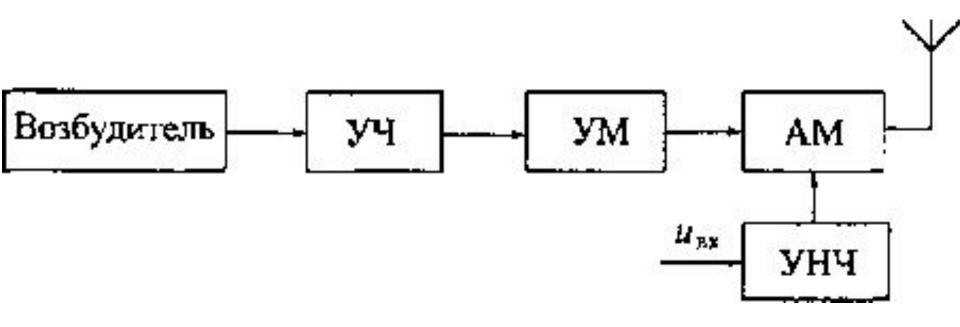
$$\eta = \frac{P_A}{P_{nomp}}$$

• ВЫДЕЛЕННАЯ ПОЛОСА ЧАСТОТ ИЗЛУЧЕНИЯ,

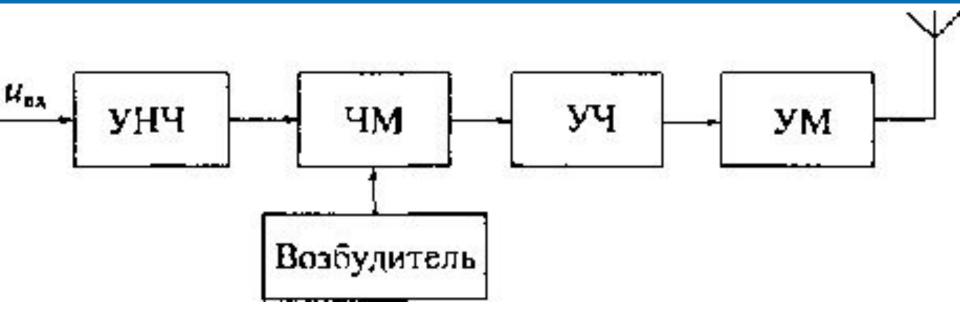
Полоса ΔFсигн. внутри которой содержится основная часть мощности передатчика (часто 98...99%).



- ПОБОЧНЫЕ И ВНЕПОЛОСНЫЕ ИЗЛУЧЕНИЯ,
- это класс неосновных излучений в полосах частот, примыкающих к необходимой полосе излучения, возникающих в процессе модуляции шумами или первичным сигналом.
- КОЭФФИЦИЕНТ НЕЛИНЕЙНЫХ ИСКАЖЕНИЙ СИГНАЛА,
- отношение мощности комбинационной составляющей спектра выходного сигнала к мощности несущей радиопередатчика
- ЭЛЕКТРОМАГНИТНАЯ СОВМЕСТИМОСТЬ И Т. Д.


ОБОБЩЕННАЯ СТРУКТУРНАЯ СХЕМА СОВРЕМЕННОГО ПЕРЕДАТЧИКА

Конструкции, габаритные размеры и масса передатчиков в основном определяются средней излучаемой мощностью. Стабильность и устойчивость работы передатчика оценивают по его способности сохранять свои электрические характеристики в допустимых пределах при воздействии окружающей среды и изменении параметров источника питания.

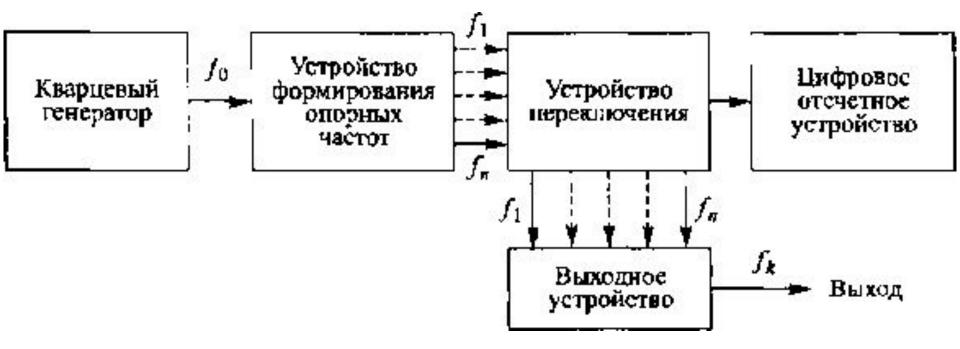

ПЕРЕДАТЧИК С АМПЛИТУДНОЙ МОДУЛЯЦИЕЙ

Простейшая схема передатчика с амплитудной модуляцией несущего колебания содержит возбудитель, каскады умножения частоты (УЧ), усиления мощности (УМ), усилитель низкой частоты (УНЧ),на который подается передаваемый сигнал u_{gy} и амплитудный модулятор (АМ).

ПЕРЕДАТЧИК С ЧАСТОТНОЙ МОДУЛЯЦИЕЙ

В диапазонах метровых и дециметровых волн в вещательных и связных передатчиках применяют частотную модуляцию. В простейших, одно-, двухканальных передатчиках частотную модуляцию осуществляют путем воздействия передаваемым сигналом u_{gx} (он предварительно усиливается в УНЧ) на частоту колебаний ЧМ-генератора (ЧМ). При этом неизменная частота несущего колебания f_0 формируется возбудителем.

СИНТЕЗАТОРЫ СВЕРХВЫСОКИХ ЧАСТОТ


Кварцевые синтезаторы частоты — многочастотные генераторы гармонических колебаний с дискретной перестройкой частоты.

Синтезаторы обеспечивают синусоидальную форму колебаний, высокую спектральную «чистоту», большую точность установки и возможность программной перестройки частоты.

Они позволяют получать напряжения фиксированных частот с дискретностью до сотых долей герц. По точности установки и стабильности частоты синтезаторы превосходят обычные генераторы с плавной перестройкой частоты.

СИНТЕЗАТОРЫ СВЕРХВЫСОКИХ ЧАСТОТ

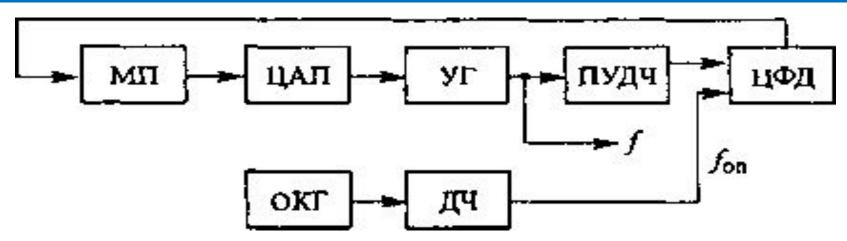
Обобщенная структурная схема синтезатора частот содержит:

кварцевый генератор частоты f_0 , устройство формирования опорных частот $f_1...f_n$,

устройство переключения, подключающее сигнал нужной частоты,

цифровое отсчетное и выходное устройства.

АНАЛОГОВЫЕ СИНТЕЗАТОРЫ ЧАСТОТ


НЕДОСТАТКИ АНАЛОГОВЫХ СИНТЕЗАТОРОВ ЧАСТОТ

1. Конечность ширины полосы синхронизации управляемого генератора, которая зависит от управляющих элементов генератора и коэффициентов передачи ФД и ФНЧ. Поэтому для получения широкой сетки синтезируемых частот приходится изменять собственную частоту f управляемого генератора.

2. Узкие возможности УДЧ, построенного, как правило, на основе счетчика импульсов. Введением обратной связи в делителе частоты можно изменять его коэффициент деления, который будет принимать любые целочисленные значения, допустимые разрядностью счетчика.

ЦИФРОВЫЕ СИНТЕЗАТОРЫ

Достоинством цифровых методов синтеза является малое время установления частоты колебаний при перестройке, что важно для функционирования быстродействующих автоматизированных систем, а также отсутствие разрыва фазы при смене частот. В синтезаторах частоты часто требуется использовать дробные значения коэффициента деления частоты. В синтезаторе частоты коэффициент деления программно-управляемого делителя частоты (ПУДЧ) изменяется во времени, образуя последовательность временных циклов определенной длительности. Полученный цикл делится еще на несколько подциклов.

ТЕНДЕНЦИИ РАЗВИТИЯ РАДИОПЕРЕДАЮЩИХ Большинство каскадов современных и ередатчиков выполняют только

цифровых и аналоговых микросхемах. Электронные и дискретные полупроводниковые приборы используют лишь в выходных каскадах усилителей передатчиков большой и сверхбольшой мощности.

Если передатчик работает на одной фиксированной частоте, содержит соединенный последовательно задающий генератор маломощный высокостабильный кварцевый автогенератор и нескольких усилительных каскадов. Когда число рабочих частот передатчика не более возбудителя используют несколько тракте один автогенератор с автогенераторов или переключающимися кварцевыми резонаторами. В настоящее время в качестве задающих генераторов возбудителя в основном применяют цифровые синтезаторы частот. Высокостабильные задающие генераторы на основе синтезаторов могут работать в диапазоне 100...200 МГц. Изготовление же передатчиков с кварцами на более высокие частоты встречает серьезные

ТЕНДЕНЦИИ РАЗВИТИЯ РАДИОПЕРЕДАЮЩИХ Применение умножителей настотый страктах радиопередатчиков

позволяет и в диапазоне СВЧ на частотах 1...100 ГГц получать колебания,

стабильность которых теоретически определяется кварцевым резонатором задающего генератора. В передатчиках низкочастотного диапазона обычно используются транзисторные умножители частоты, однако с увеличением несущей частоты и переходом в область СВЧ параметры транзисторных умножителей частоты и усилителей мощности заметно ухудшаются.

варакторные умножители частоты. Наиболее важными показателями умножителей частоты, применяемых в радиопередающих устройствах, являются коэффициент умножения, выходная колебательная мощность, коэффициент гармоник и КПД.

Требуемые уровни выходной мощности передатчиков современных

в выходных каскадах передатчиков выгодно

систем передачи информации в некоторых случаях на три-пять порядков превышает максимальную мощность, генерируемую электронными приборами. Этот разрыв между мощностью радиопередатчика и мощностью единичного генератора стал особенно ощутим при переходе к