Н.Д. Арутюнова дает следующее определение дискурса:

Дискурс (от франц. discours – речь) – связный текст в совокупности с экстралингвистическими, прагматическими, социокультурными, психологическими и другими факторами, текст, взятый в понятийном аспекте; речь, рассматриваемая как целенаправленное социальное действие, как компонент, участвующий во взаимодействии людей и механизмах их сознания (когнитивных процессах).

Дискурс – это речь, «погруженная в жизнь».

Как самостоятельный научный термин он появился в 70-е годы XX века в западноевропейской лингвистике – его можно признать это понятие достаточно новым как для лингвистической, так и для всех других наук.

Профессор Амстердамского университета Т. А. Ван Дейк определяет основную функцию дискурса как коммуникационную – трансформировать макросоциальные феномены, такие как наука, идеология, культура, практически до каждого человека, на микросоциальный уровень, путем дозированного информационного воздействия.

Сформированы основные подходы к пониманию термина «дискурс»:

- 1) дискурс как текст, актуализируемый в определенных условиях с учетом экстралингвистических параметров;
- 2) дискурс как общение, реализуемое в ходе определенных дискурсивных практик;
- 3) дискурс как вид речевой коммуникации;
- 4) дискурс как знаково-символическое культурное образование, как культурный код;
- 5) дискурс как контекст педагогической коммуникации со специфическим профессиональным «наполнением».

Свойства дискурса:

- ❖-динамичность (изменение дискурса под влиянием воздействующих на него факторов);
- -социальность (актуализация дискурса как социального явления);
- ❖-интегративность (синтез, объединение в целое всех компонентов дискурса и их комплексное взаимодействие);
- ❖-персонализация (в центре взаимодействия находится адресат его мотивы, цели, интересы, потребности, ценностные ориентации);
- **❖**-диалогичность *;*
- ❖-контекстуальность (учет особенностей дискурса в контексте определенной деятельности);
- ❖-целостность (наличие всех структурных элементов);
- ❖-когерентность (структурно-содержательная связь между компонентами дискурса);
- ❖-ситуативная обусловленность (учет социально, культурно, личностно значимых условий и обстоятельств конкретной коммуникативной ситуации);
- ❖-интенциональность (учет коммуникативных намерений участников дискурса);
- -ценностная ориентированность;
- ❖-недискретность (неопределенность границ дискурса как открытой динамической системы).

<u>Научный дискурс</u>

- В.И. Карасик разработал классификацию типов дискурса, взяв за основу типологии социологические критерии:
- фдискурсивную обстановку;
- ❖статусно-ролевые характеристики участников дискурса;
- ❖дистанцию (проксемику) общения.

На основании данных критериев В.И. Карасик выделяет два типа дискурса:

- □личностно-ориентированный (персональный) дискурс
- □статусно-ориентированный (институциональный) дискурс

Статусно-ориентированный (институциональный) дискурс обязывает рассказчика представлять некоторый социальный институт, идентифицировать себя как должностное лицо, характеризуется двумя главными признаками: целевой направленностью данного дискурса и его аудиторией.

Примеры институционального дискурса:

- ◆Педагогический
- **♦**Научный
- ❖Религиозный
- ◆Политический
- ♦Медицинский
- **♦**Рекламный

Личностно-ориентированный (персональный) дискурс предполагает беседу со слушателями при обращении к ним от себя лично. Этот вид коммуникации ставит во главу угла частный интерес рассказчика.

<u>Научный дискурс</u>

<u>Научный дискурс</u> – специфический для науки способ организации речевой деятельности.

Научный дискурс включает в себя когнитивные (понятия, схемы, объекты, методы, программы, парадигмы, эпистемы), лингвистические (тропы и фигуры речи, терминология, речевые акты, синтаксис, семантика и прагматика языка) и политические (запреты и предписания, формы педагогического воздействия, социального взаимодействия и дисциплины) компоненты.

В отечественной традиции сложилась объективистская, нейтральная традиция изучения научного дискурса как научного стиля речи, т. е. совокупности речевых форм, средств и правил, используемых в научной коммуникации (анонимность, объективность, строгость, точность, формализованность).

Отечественная теория функциональных речевых стилей выделяет характеристики *научного дискурса* по двум параметрам:

- плану содержания
- **♦**и плану выражения.

Основная особенность <u>плана содержания научного стиля</u> – это строгая определенность рамок предмета высказывания и принципиально объективное отношение к нему.

Основными содержательными <u>единицами научной речи</u>, как и логического мышления, являются **понятие**, **суждение** и **умозаключение**; при этом следует отметить, что в научном дискурсе план содержания является определяющим, доминирующим и первичным по отношению к плану выражения. Именно содержательной стороной научной речи, коммуникативными требованиями содержания определяется и исконная форма ее существования – письменная, ее монологический характер, принципиальная бесподтекстность и ее логическая завершенность.

Общие характеристики <u>научного дискурса</u> в <u>плане выражения</u>: обобщенный характер, объективность изложения, точность, логичность и безличность изложения.

Кроме того, для современного научного стиля свойственны замкнутость, системность, стандартизация средств выражения.

Еще одной специфической характеристикой научного дискурса является использование искусственных языков:

- 1) графики, чертежи, рисунки и пр.;
- 2) математические, физические, логические символы и пр.

Характерной особенностью научного дискурса является широкое применение разного рода ссылок, сносок, примечаний, что обусловлено такой чертой научного стиля, как его точность.

<u>Научный дискурс</u>

Стратегии научного дискурса:

- определить проблемную ситуацию и выделить предмет изучения,
- 🛾 проанализировать историю вопроса,
- 🛾 сформулировать гипотезу и цель исследования,
- 🛾 обосновать выбор методов и материала исследования,
- 🛾 построить теоретическую модель предмета изучения,
- 🛾 изложить результаты наблюдений и эксперимента,
- 🛾 прокомментировать и обсудить результаты исследования,
- 🛾 дать экспертную оценку проведенному исследованию,
- определить область практического приложения полученных результатов,
- изложить полученные результаты в форме, приемлемой для специалистов и неспециалистов (студентов и широкой публики).

Эти стратегии можно сгруппировать в следующие классы:

- **♦**выполнение,
- экспертиза,
- ❖внедрение исследования в практику.

Стратегии научного дискурса реализуются в его жанрах

- ♦научная статья,
- **♦**монография,
- фдиссертация,
- **♦**научный доклад,
- ❖выступление на конференции,
- **♦**стендовый доклад,
- научно-технический отчет,
- **♦**рецензия,
- реферат,
- **♦**аннотация,
- **♦**тезисы.

<u>Язык профессиональной</u>

<u>коммуникации</u>

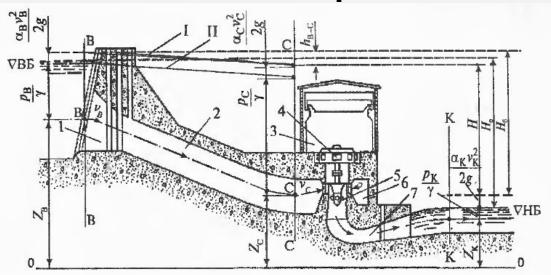

Рис. 1. Структура национального языка

Рис. 2. Структура языка профессиональной коммуникации

Терминология представлена следующими четырьмя разрядами: общеотраслевые (общенаучные) термины, отраслевые, узкоотраслевые и узкоспециальные терминологические единицы.

<u>Терминология</u>

<u>Напо</u> <u>р</u>

Рис. 1.2. Определение напоров гидроэлектростанции: I — линия энергии; II — пьезометрическая линия; I — водоприемник; 2 — турбинный воловод; 3 — злание ГЭС; 4 — генератор; 5 — турбина; 6 — спиральная камера; 7 — отсасывающая труба

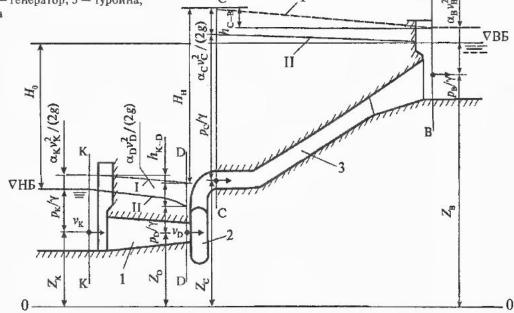


Рис. 1.3. Определение напора насоса: I — линия энергии; II — пьезометрическая линия; I — всасывающая труба; 2 — насос; 3 — трубопровод

<u>Напор</u>

Геметрический, или статический напор ГЭУ равен разности отметок уровней верхнего и нижнего бьефов Но.

Напор брутто на станции Нб (при работающих турбинах) определяется как разность полных удельных энергий потока в верхнем и нижнем бьефах или представляет собой разность отметок верхнего и нижнего бьефов, если расход через турбину равен нулю.

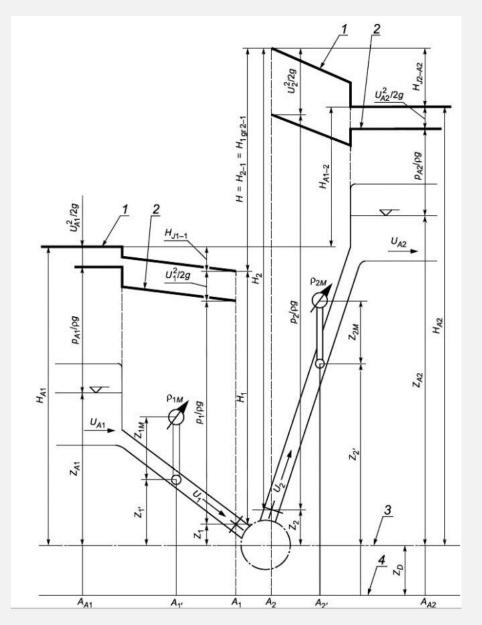
Полезный напор на турбине Н (напор нетто) меньше напора брутто на ГЭС при тех же отметках верхнего и нижнего бьефов на величину потерь энергии в подводящих устройствах и представляет собой разность удельных энергий потока на входе и выходе из турбины, т.е. это рабочий напор на турбине.

Напор насоса равен приращению механической энергии, получаемой каждым килограммом жидкости, проходящей через насос, т.е. разности удельных энергий жидкости при выходе из насоса и при входе в него.

<u>Насос</u>

+6CT ISO 17769-1-2014 Насосы жидкостные и установки.

Hacoc: Машина (механическое устройство), включающая в себя всасывающий и напорный присоединительные патрубки и выступающие части своих валов, предназначенная для создания потока жидкой среды.


Насосный агрегат: Агрегат, состоящий из насоса и привода совместно с элементами трансмиссии, опорной плитой и любым другим вспомогательным оборудованием.

Насосная установка: Конструкция из трубопроводов, опорных частей, фундаментов, блоков управления, приводов и т.д., в которую установлен насос или насосный агрегат с целью обеспечения выполнения тех задач, для которых данная конструкция предназначена

Насос

Терминология

Г<u>Б</u>СТ ISO 17769-1-2014 Насосы жидкостные и установки.

Полный напор установки На2-1:

Разница между полным напором на выходной стороне установки и полным напором на входной стороне установки

Полный напор насоса H2-1 : Разница между полным напором на выходе в насос и полным напором на входе из насоса

$$H_{2-1} = H = H_2 - H_1$$

$$H_{2-1} = H = z_2 - z_1 + \frac{p_2 - p_1}{\rho \cdot g} + \frac{v_2^2 - v_1^2}{2g}$$

$$H_{2-1} = H = z_{2'} - z_{1'} + \frac{p_{2'} - p_{1'}}{\rho \cdot g} + \frac{v_{2'}^2 - v_{1'}^2}{2g} + H_{J1'-1} + H_{J2'-2}$$

- 1 линия полной удельной энергии потока;
- 2 напорная линия;
- 3 базовая плоскость NPSH:
- 4 эталонная плоскость

<u>Гидротурби</u>

<u>Терминология</u>

C**10**17330282.27.140.005-2008

ГИДРОТУРБИННЫЕ УСТАНОВКИ. ОРГАНИЗАЦИЯ ЭКСПЛУАТАЦИИ И ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ. НОРМЫ И ТРЕБОВАНИЯ

Гидроэлектростанция, ГЭС: Электростанция, преобразующая механическую энергию воды в электрическую энергию.

Гидравлическая турбина (гидротурбина): Турбина, в которой в качестве рабочего тела используется вода.

Гидротурбинная установка: Установка, предназначенная для преобразования энергии воды в механическую, включающая гидравлическую турбину и вспомогательное оборудование.

Гидроагрегат: Агрегат, состоящий из гидравлической турбины и электрического гидрогенератора.

Удельная энергия жидкости – энергия, отнесенная к единице массы (можно также отнести к единице веса или объема)

Удельный вес – вес единицы объема жидкости $\gamma = \rho g$

Турбина

Расход – объем воды, протекающий в единицу времени через сечение.

Q- объемный расход

ρ g Q – весовой расход

hoQ — массовый расход

Hacoc

Подача – объем жидкости подаваемой в единицу времени.

Q- объемная подача

ρ g Q – весовая подача

ρ Q – массовая подача

Мощность потока - работа совершаемая водой в единицу времени при поступлении из точки A в точку B.

$$N = \rho g QH (Bm)$$

Мощность турбины

$$N_m = N\eta_{m=} \rho g QH\eta_m$$

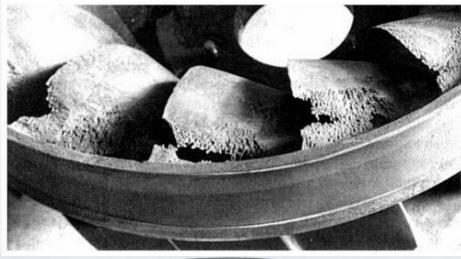
Мощность гидроагрегата

$$N_a = N_m \eta_{\text{ген}} = N \eta_m \eta_{\text{ген}} = \rho g Q H \eta_m \eta_{\text{ген}}$$

Полезная мощность насоса – приращение полной энергии получаемой потоком в единицу времени

$$N = \rho g QH (Bm)$$

Потребляемая насосом мощность


$$N_H = N / \eta_H = \rho g QH / \eta_H$$

Потребляемая насосным агрегатом мощность

$$N_{Harp} = N_{H} / \eta_{\partial} = N / \eta_{H} / \eta_{\partial} = \rho g QH / \eta_{H} / \eta_{\partial}$$

Кавитация – явление образования парогазовых областей (каверн) в жидкости в зонах, в которых давление *р ниже давления* парообразования *pV* (*p*<*pV*).

Кавитация наблюдается при работе многих инженерно-технических устройств – насосов, гидротурбин, гидрокрыльев, гребных винтов.

Высота всасывания и подпор

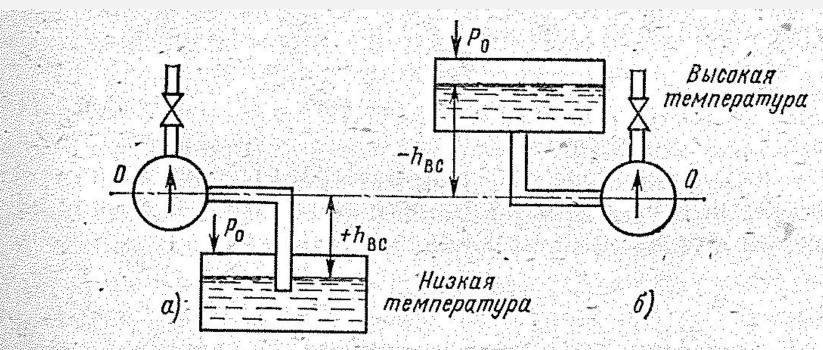


Рис. 7.10. Варианты установки насосов относительно уровня всасываемой жидкости

Высота всасывания и подпор

Геометрическая высота всасывания - расстояние от оси насоса до расчетного уровня жидкости в резервуаре, из которого жидкость поступает в насос.

Отрицательная геометрическая высота всасывания называется подпором.

Вакуумметрическая высота всасывания складывается из геометрической высоты всасывания hвс, потерь напора Shs во всасывающем трубопроводе и скоростного напора при входе в насос $v^2/2g$

Кавитационный запас — превышение полного напора жидкости во всасывающем патрубке насоса над давлением $p_{_{\text{н.п}}}$ насыщенных паров этой жидкости.

Кавитационный запас — превышение полного напора жидкости во всасывающем патрубке насоса над давлением $p_{_{\rm н.п}}$ насыщенных паров этой жидкости.

ГОСТ ISO 17769-1-2014 Насосы жидкостные и установки.

Кавитационный запас; NPSH: Разность между абсолютным значением полного напора на входе в насос и напором, эквивалентным давлению насыщенного пара перекачиваемой жидкости при определенной температуре, относительно базовой плоскости NPSH.

NPSH - net positive suction head

$$NPSH = H_1 - z_D + \frac{p_{amb} - p_v}{\rho_1 g}$$

где H_1 - полный напор (2.1.5.1.3) в точке наблюдения 1;

 z_D - высота базовой плоскости NPSH (2.1.5.4), м;

 $p_{\it amb}$ - атмосферное давление (2.1.9.2), Па;

 p_{ν} - давление пара перекачиваемой жидкости (3.1.9.3), Па;

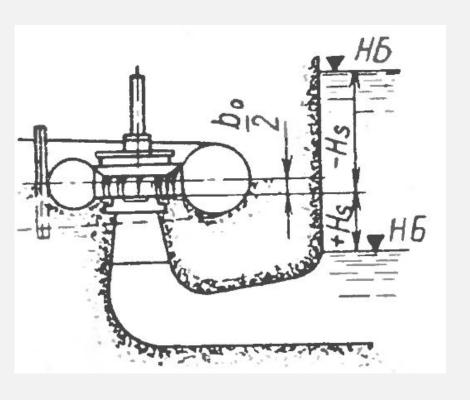
ρ₁ - плотность (2.1.16.1) в точке наблюдения 1;

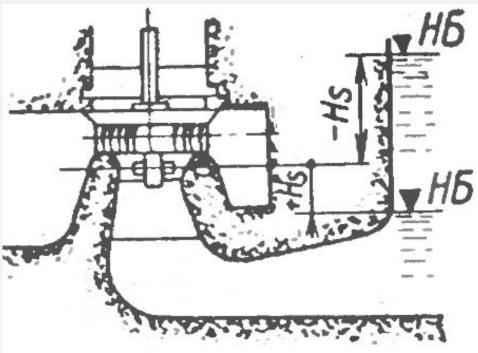
g - ускорение свободного падения, м/с 2.

ГОСТ ISO 17769-1-2014 Насосы жидкостные и установки.

Кавитационный запас; NPSH: Разность между абсолютным значением полного напора на входе в насос и напором, эквивалентным давлению насыщенного пара перекачиваемой жидкости при определенной температуре, относительно базовой плоскости NPSH.

NPSH вычисляется относительно *базовой плоскости* NPSH, тогда как имеющийся кавитационный запас NPSHA вычисляется относительно *оси входного/подводящего патрубка*.


Располагаемый кавитационный запас; NPSHA: Минимальный кавитационный запас, который достигается на входе в насос, определяемый особенностями установки при заданном значении подачи.


Допустимый кавитационный запас; NPSHR: Минимальный кавитационный запас во входном патрубке насоса, необходимый для достижения расчетных или эксплуатационных технических характеристик при заданных условиях.

Кавитационный запас, определяющий трехпроцентное снижение полного напора; NPSH3: Значение NPSH, при котором происходит трехпроцентное снижение полного напора на первой ступени насоса, используемое в качестве стандартного базиса для построения рабочих характеристик.

<u>Терминология</u>

Высота отсасывания

Высота отсасывания

Высота отсасывания гидравлической турбины - Разность отметки установки гидравлической турбины и отметки нижнего бьефа.

Допустимая высота отсасывания гидравлической турбины - Наибольшая высота отсасывания гидравлической турбины, при которой для данного режима гарантируется коэффициент полезного действия, указанный на эксплуатационной характеристике гидравлической турбины

Кавитационный коэффициент установки гидравлической турбины - Отношение разности местного атмосферного давления, выраженного высотой водяного столба и высоты отсасывания гидравлической турбины к напору гидравлической турбины. $p_{\mathtt{H.~6}}$ $p_{\mathtt{B.~1}}$

 $\sigma_{y} = \frac{\frac{p_{H.6}}{\rho g} - H_{s} - \frac{p_{B. \Pi}}{\rho g}}{H}.$

Кавитационный коэффициент турбины - Отношение наибольшего динамического разряжения на лопасти рабочего колеса к используемому напору.

Критический кавитационный коэффициент гидравлической турбины - Наименьшее значение кавитационного коэффициента установки гидравлической турбины, при котором допускается ее эксплуатация

ГОСТ 23956-80 Турбины гидравлические. Термины и определения

Универсальная характеристика гидравлической турбины - Совокупность изолиний, определяющих зависимость коэффициента полезного действия, критического кавитационного коэффициента, открытия направляющего аппарата и угла установки

лопастей рабочего колеса гидравлической турбины от приведенных расхода и

частоты враще

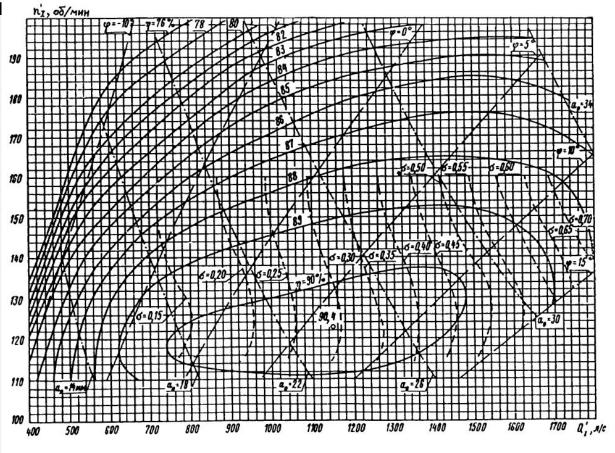


Рис. П.6. Универсальная характеристика гидротурбины ПЛ40/587а-46

<u>Терминология</u>

ГОСТ 23956-80 Турбины гидравлические. Термины и определения

Пропеллерная характеристика поворотно - лопастной гидравлической турбины - Универсальная характеристика гидравлической турбины при определенном угле установки лопастей рабочего колеса

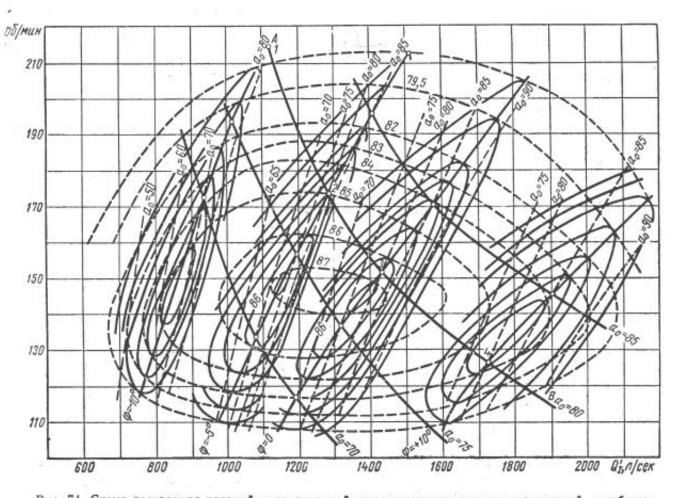


Рис. 74. Схема построения главной универсальной характеристики поворотнолопастной турбины

ГОСТ 23956-80 Турбины гидравлические. Термины и определения

Линия 5 %-ного запаса мощности гидравлической турбины - Линия на универсальной характеристике гидравлической турбины, определяющая режимы, соответствующие 95 %-ной предельно допустимой мощности модели

гидравлическо

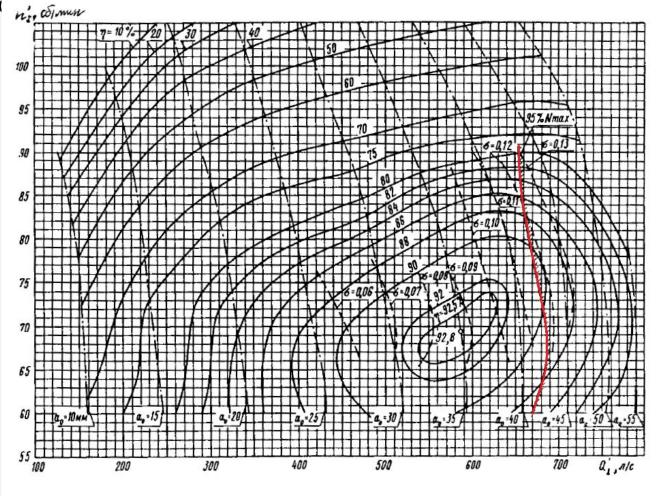
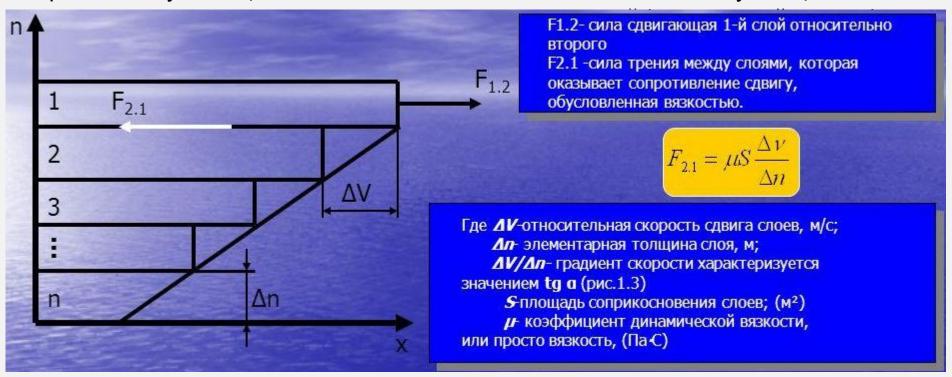


Рис. П.16. Универсальная характеристика гидротурбины РО170/805-56,87

Раздел механики, в котором изучаются равновесие и движение жидкостей, а также взаимодействие между жидкостью и обтекаемыми ею поверхностями или телами, называется «механика жидкости», или «гидромеханика».

Термин «жидкость» в гидромеханике обладает более широким значением, чем это принято в современном русском языке.

В понятие «жидкость» включают физические тела, обладающие текучестью, то есть способностью изменять свою форму под воздействием сколь угодно малых сил.


Поэтому под этим термином подразумеваются не только обычные (капельные) жидкости, но и газы.

Основные физические свойства жидкостей и газов

- **♦**Плотность и удельный вес
- **♦**Вязкость
- ◆Сжимаемость
- ◆Температурное расширение
- ❖Испаряемость
- ◆Растворимость газов

Вязкость

Вязкость — это способность жидкости сопротивляться сдвигу, т. е. свойство, обратное текучести (более вязкие жидкости являются менее текучими). Вязкость

Сжимаемость

Сжимаемость — это способность жидкости изменять свой объем под действием давления. Сжимаемость капельных жидкостей и газов существенно различается. Так, капельные жидкости при изменении давления изменяют свой объем крайне незначительно. Газы, наоборот, могут значительно сжиматься под действием давления и неограниченно расширяться при его отсутствии.

Жидкости, подчиняющиеся закону Ньютона, называют **ньютоновскими**. **Ньютоновские жидкости имеют вязкость, не зависящую от силы** (а точнее, от от градиента скорости деформации), которую к ним прикладывают.

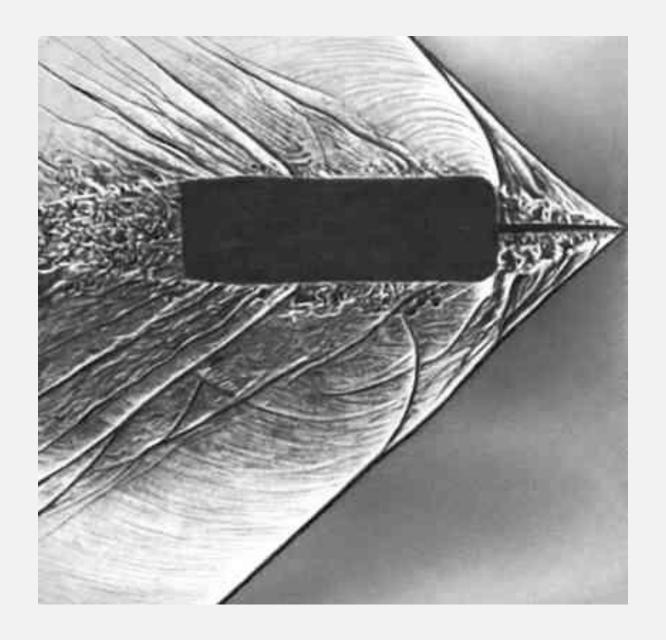
Примеры:

Вода, растворители, моторное масло, растительное масло, водный раствор сахара или соли, жидкий парафин, глицерин, силиконовые смазки, косметика на масляной и водной основе, альгинат натрия

Жидкости, не подчиняющиеся закону Ньютона называют неньютоновскими или аномальными жидкостями.

Неньютоновской жидкостью называют жидкость, при течении которой её **вязкость зависит от градиента скорости.**

Примеры:


Высококонцентрированные растворы полимеров, резины, крахмала, крахмальные пасты, вискоза, латекс, эмульсии, целлюлозные лаки, покрытия, вакса, смазки, сгущенное молоко, концентрированные соки, пульпа, мыло, бензин.

Ламинарное течение – течение, при котором жидкость движется слоями, перемешивание между которыми отсутствует.

Турбулентное течение – течение, сопровождающееся интенсивным перемешиванием жидкости и пульсациями скоростей и давлений.

Переход от ламинарного режима к турбулентному происходит при вполне определенном, критическом числе Рейнольдса – Reкр. Для круглых труб критическое число Рейнольдса составляет Re кр ~2300.

Отрывное течение в сверхзвуковом потоке.