Методы сканирования разрезов скважин

1

1985 FMS - 2 pad

Настоящее

Наклономеры и приборы визуального контроля

Телеметрические системы Электрический микроимейджер FMI

Ультразвуковой прибор визуального контроля UBI

Азимутальные электрические зонды ARI

Азимутальный нейтронно-плотностной зонд ADN

Сравнение изображений

Formation MicroImager (FMI) Azimuthal Laterolog (ARI) Ultrasonic Imager (UBI)

Песчаники и глины – градационная шкала

Применение телеметрических систем

• Структурное

Угол падения – Проверка измеренной глубины Разломы – Глубина, Простирание, Перемещение, Угол, Сбросы – Несогласия, Границы пластов

• Стратиграфическое

Условия залегания Ориентировка

• Изучение коллекторских свойств

Тонкие пласты Привязка изображения Калибровка по керну Изучение направлений проницаемости Трещины / Пустоты Геометрия скважины / Изучение трещин, образовавшихся в процессе бурения

Скважинный наклономер - FMI

Видимый наклон

TD = Истинный наклон : Угол наклона / Азимут падения

Истинное падение пластов находится из кажущегося, полученного по результатам наклонометрии

Сопоставляется синусоида по характерным признакам, которые зависят от пластов и формы скважины. Картина, изображенная выше, показывает падение пласта на север.

8

Определение угла падения азимута пласта

-12700

Ориентация напряжений в скважине

О напряжениях горной породы во время бурения скважин было известно в 1970 из различных измерений, которые тогда проводились наклономерами.

Напряжения различного направления в скважине отражаются в анизотропии показаний электродов.

Трещины в породе, вызванные бурением

 Направления разрывов N15W-S15E (направление минимального стресса)

Трещины в результате бурения N75E-S75W (направление максимального стресса)

Анализ трещин

На 3D изображении в плоскости запад-восток видны трещины, падающие на юг.

Разломы

Нормальный разлом
простирание N25E-S25W
Паление WNW

TD: 62/304

Сравнение керна с изображением телеметрических систем

Сравнение керна и изображения

Сравнение телеметрического изображения с

Анализы несогласий

18

	C2 6 16	1:48	AT90.SPEA .009 0.2 2	Resitive Static	Conductive NP HI .LDT	D .032 Resitive	Dynamicconductive	Silt	Sand	Silt
	(in)	1 11	(ohm.m)		(ft3/1	ft3)			U	0
									23.71	17.72
		1							23.35	17.02
		_							22.94	17.05
Расчет									22.61	16.69
песиянистости		-				Ӈ ӉӉ			22.50	16.45
nee faithe for th									22.25	16.30
									21.76	15.81
		xx030							21.76	15.52
									21.74	15.22
		1							21.59	15.07
									21.36	14.85
									20.82	14.26
		-							20.57	13.81
									20.54	13.52
		-							20.25	13.29
		x x040							19.90	12.97
		1.1.040							19.29	12.67
	├ (-	-				}			19.08	12.48
									18.76	12.37
									18.52	12.20
		_							18.05	11.62
									17.93	11.33
									17.91	10.77
		XXOED							17.47	10.56
		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7							17.47	10.46
		-							17.47	10.37
					25 📲 I F V	11111111 🖡 🛃	1 26 92 Hi		17.47	10.32

Сопоставление турбидитов со слоистыми песчаниками

٧D	AT90.FBSTB .031 [A	Resistive FMI Image	Conductive DPHL.FBSTB .031 [A3	Опользаюттногат	
:20	0.2 (ohm.m)	20	0.6 (ft3/ft3)	0	
					(>
					1
3					
		in ne te		in ne te ro	
6			Туроидиты	-84 28 38 38	
040		\$ \$ \$ \$ \$ \$			
9				- 22 <u>99</u> 25 95	
			Песчаники		
					╶┤┶┥┼┼┼┼┼┼┼┼
				- 22 3 8 8 5 8 6	

Синтетическое изображение керна, полученное по с помощью телеметрической аппаратуры

Стратиграфические анализы

На разрезе виден палеопоток западного направления внутри канала

Азимутальная гистограмма

• Структурное применение

• Стратиграфическое

Ультразвуковой скважинный прибор

Датчик

Сопоставление изображений, полученных приборами UBI и FMI

Ультразвуковые приборы не так хорошо изображают напластование как электрические, их более оптимально применять в процессе бурения. Трещины, наблюдаемые на изображениях ультразвукового метода больше чем на изображениях электрического метода. Причиной является частотное ограничение.

25

Ref: Schlumberger

Пример изображения приборами UBI и FMI

искривления ствола скважины

Ультразвуковое изображение становится менее четким в месте искривления скважины, увеличивает диаметр скважины. Изображение, полученное с помощью электрических методов менее чувствительно к изменениям внутри скважины, несмотря на влияние бурового раствора.

Изображение с помощью ультразвукового прибора в горизонтальной скважине

Изображен угол наклона пласта относительно скважины

Ref: Schlumberger

Азимутальные приборы бокового каротажа (ARI)

Данные азимутальных электрических зондов

ARI – это прибор для получения изображения подобно FMI, однако больший размер электродов и центрирование прибора в скважине является причиной низкого разрешения по сравнению с FMI. Маленький размер электродов и прижимной башмак делают изображения FMI более резкими

Регистрация углов падения с помощью прибора ARI

Данные, полученные с помощью азимутального бокового прибора каротажа сравниваются с SHDT Любое отклонение прибора от центра скважины создаст искажение в изображении, что повлечет за собой неправильное определение угла наклона. Изображения можно использовать только для интерпретации мощных слоев.

Изображения прибора азимутального бокового каротажа (ARI) в горизонтальной скважине

Прибор азимутального нейтронно –плотностного каротажа

Azimuthal Density Neutron

Нейтронные датчики Катушка Источник нейтронов Электронный блок Датчик Детекторы плотности Ультразвуковой

Ультразвуково датчик

Батареи

Кожух

Квадранты прибора азимутального нейтронно –плотностного каротажа

Применение приборов LWD – ADN в наклонной

скважине.

Выделение тонких пластов

33