Mic-1: Microarchitecture

University of Fribourg, Switzerland

System I: Introduction to

Computer Architecture

WS 2005-2006

20 December 2006

Béat Hirsbrunner, Amos Brocco, Fulvio Frapolli

(1)

ic-1: Microarchitecture

Memory control signals (rd, wr, fetch)

‘_
w Y

v

4-to-16
Decoder

B bus

High
bit

A

512 x 36-Bit
control store
for holding

the microprogram

MIR

| Addr [J] ALU |

C

ME

JAMN/JAMZ

N

7

2

Control
signals

‘f Enable
onto
B bus

* Write
C bus
to register

Figure 4-6. The complete block diagram of our example mi-
croarchitecture, the Mic-1.

Mic-1: Microarchitecture (2)

IVISTTTOT

COTTIor S'iglldlb (ra, Wr, Te1TIT)

Lol ;

j—, MAR 4-to-
< Decq

16
der

MPC 9

EP:ED:ED:I—/—

(@)

. " j %’I-bit flip—flop
ALU /L

512 x 36-Bit
control store

JMPC

MIR

[Addar [J] ALU |

C

[m[e]

JAMN/JAMZ

High
bit

z
7

N

signals

‘P Enable
onto
B bus

* Write
C bus
to regist

er

Figure 4-6. The complete block diagram of our example mi-

croarchitecture, the Mic-1.

Data path

Control section

&)

The data path

From/
To

Memory,

C bus

ALU contro

mory
ontrol
registers

-

Control signals

‘} Enable onto B bus

f Write C bus to register

|_Tos =
£\
[oPc =
A
B bus ([J

N
ALU z
Shifter 2 Shifter control

° 32'b|t regiSterS(with exception of

MBR, which is a 8 bit register)

. B bus to drive data to
the ALU

. C bus to drive data from
the ALU to registers

. H register as A-input of

the ALU

ALU with 6 control

signals (and 2 outputs, N to test for Negative

numbers and Z to test for Zero)

Figure 4-1. The data path of the example microarchitecture used in this chapter.

(4)

ALU Control Signals

F, | F, | ENA | ENB | INVA | INC | Function
0 1 1 0 0 0 A
0 1 0 1 0 0 B
0 1 1 0 1 0 A
1 0 1 1 0 0 B
1 1 1 1 0 0 A+B
1 1 1 1 0 1 A+B+1
1 1 1 0 0 1 A+ 1
1 1 0 1 0 1 B+ 1
1 1 1 1 1 1 B—A
1 1 0 1 1 1 B—1
1 1 1 0 1 1 —A
0| O 1 1 0 0 A AND B
0 1 1 1 0 0 AORB
0 1 0 0 0 0 0
1| 1 0 0 0 1 1
0 1 0 0 1 0 —

Figure 4-2. Useful combinations of ALU signals and the function performed.

()

The data path

Registers have control signals to enable/disable
reading from them (put value on the B bus) and
writing to them (store value from the C bus)

It is possible to read only from one register at
time: so we can use a 4 -> 16 bit decoder

It is possible to write to one or more registers at
the same time: so we need 9 control signals for
the C bus.

(6)

Data path synchronization (1)

< —] —
To < —] ﬂ
and
from <
main

memory | | <7———

MAR

C bus

ALU control

Memory

control

registers Cycle
starts
here

[& =
A
B |
A Control signals
cPP + 2ble onto B bus
f Write C DUga.regter
TOS =
OPC | L.
——-B bus 2
L. e 3,
6
ALU ;j 4,
Il 5

Shifter
2

Shifter control

Registers loaded
Shifter instantaneously from

output C bus and memory on
1 stable rising edge of clock
Clock cycle 1 / > Clock cycle 2 ———————
— (New MPC used to
-<—load MIR with next
:AW> <AX> - Ay - 4AZ> microinstruction here
e -
* * MPC
Set up ALU -
signals e available
to drive shifter here
data path
Drive H Propagation
and from shifter
B bus to registers

Control signals stabilize

A register value is put on the B bus
ALU and shifter operate

Result propagate on the C bus

Result is written in the registers on the
raising edge of the next clock pulse

Figure 4-1. The data path of the example microarchitecture used in this chapter.

(7)

Data path synchronization (2)

< —] —— MAR
Memory
control
To - =p MDR ety registers Cycle
and starts
from < here
main
memory < — PC ——
—JeliERT =
[& =
A
[V =
A ontrol signals
CPP 4 En3yg onto B bus
f Write CWgs to register
TOS >
OPC L
e A ’
g N
ALU control ALU ph 4.
Il 5.
Shifter 7 Shifter control

Registers loaded

Shifter
output
1 stable

Clock cycle 1

/

instantaneously from
C bus and memory on
rising edge of clock

.

.

-
Lt

-

New MPC used to
<«—|oad MIR with next

microinstruction here

ALU
and
shifter

Set up
signals
to drive
data path

Drive H
and
B bus

Propagation
from shifter
to registers

MPC

Clock cycle 2 ———————

available

here

Control signals stabilize

Register's value is put on the B bus

ALU and shifter operate
Result propagate on the C bus

Result is written in the registers on the
raising edge of the next clock pulse

Figure 4-1. The data path of the example microarchitecture used in this chapter.

(8)

Data path synchronization (3)

< —] —— MAR
Memory
control
To - =p MDR ety registers Cycle
and starts
from < here
main
memory < — PC ——
—JeliERT =
S
A
[V = |
A Control signals
CPP 4 Enable onto B bus
f Write C bus to register
TOS >
OPC L
e . ’
l A <+B
6
ALU control ALU / 7 4
Il 5.
Shifter 7 Shifter control

Registers loaded

Shifter instantaneously from
output C bus and memory on
1 stable rising edge of clock
Clock cycle 1 / > Clock cycle 2 ———————
e L New MPC used to
-<—load MIR with next
<AW> <AX> - Ay - ~AZ> microinstruction here
| L
MPC
Set up ALU -
signals and available
to drive shifter here
data path
Drive H Propagation
and from shifter
B bus to registers
Control signals stabilize
L] ' M
Register's value is put on the B bus

ALU and shifter operate
Result propagate on the C bus

Result is written in the registers on the
raising edge of the next clock pulse

Figure 4-1. The data path of the example microarchitecture used in this chapter.

(9)

Data path synchronization (4)

Registers loaded

<—f—1 MAR Shifter instantaneously from
Memory output C bus and memory on
control Cycle 1 stable rising edge of clock
:r)md <L MR reglsters starts /
‘:1‘;':1 < here Clock cycle 1 S Clock cycle 2 ——»|
memory < — PC >
— New MPC used to
______ -<—load MIR with next
——— _'\"_B_R_ﬂF f"‘; gAX> » Ay B microinstruction here
% — —————
T } } MPC
_ ggtnl;FS érl;éJ available
x Control signals to drive shifter here
data path
PP b—> 4 Enable onto B bus
)) Drive H Propagation
f Write C bus to register and from shifter
TOS F—> B bus to registers
— . Control signals stabilize
. ' .
I .. Register's value is put on the B bus
.
. . . ALU and shifter operate
6
au SN .. Result propagate on the C bus
1l . Result is written in the registers on the

Shifter
2

Shifter control

raising edge of the next clock pulse

Figure 4-1. The data path of the example microarchitecture used in this chapter.

(10)

Data path synchronization (4)

< —] —— MAR
Memory
control
To - =p MDR ety registers Cycle
and starts
from < here
main
memory < — PC ——
—foti =
%
K A
ﬁ— Control signals
TR 4 Enable onto B bus
A
f Write C bus to register
TOS =
OPC L
e . ’
‘. N
ALU control ALU ph 4.
Il 5
Shifter 7 Shifter control

Registers loaded

Shifter
output
1 stable

Clock cycle 1

/

instantaneously from
C bus and memory on
rising edge of clock

.

L

-
Lt

New MPC used to
<«—|oad MIR with next

microinstruction here

ALU
and
shifter

Set up
signals
to drive
data path

Drive H
and
B bus

Propagation
from shifter
to registers

MPC

~ Clock cycle 2 ———————

available

here

Control signals stabilize

Register's value is put on the B bus

ALU and shifter operate
Result propagate on the C bus

Result is written in the registers on the
raising edge of the next clock pulse

Figure 4-1. The data path of the example microarchitecture used in this chapter.

(11)

MAR and MDR (1)

MDR ——>

2
32 bit registers connected to the main memory

MAR = Memory Address Register
MDR = Memory Data Register
MAR has only one control signal (input from C)

Two memory operations: read and write

(12)

MAR and MDR (2)

it MAR (counts in words)

32-Bi
dddddddd ¢
4—|- 0 0

i

Figure 4-4. Mapping of the bits in MAR to the address bus.

Data is word (4*8bit = 32bit in our ISA)
addressed!

=>MAR addresses are shifted 2bit left (=" 4)

Memory Access

A memory read initiated at cycle k delivers data
that can be used only in cycle k+2 or later!

Registers loaded
Shifter instantaneously from

output
Cycle 1 stable
starts

C bus and memory on
rising edge of clock

- Clock cycle 2 ——

here Clock cycle 1 /
L
Aw i AX Ay Az
Set up ALU
signals and
to drive shifter
data path

Drive H Propagation

and from shifter
B bus to registers

|

New MPC used to
<—load MIR with next
microinstruction here

MPC
available
here

Figure 4-3. Timing diagram of one data path cycle.

—

MAR is loaded

Memory access

MDR is loaded with data
read from memory

Data in MDR is available

(14)

Memory Access

A memory read initiated at cycle k delivers data
that can be used only in cycle k+2 or later!

Registers loaded
Shifter instantaneously from
output C bus and memory on
Cycle 1 stable rising edge of clock

starts

here Clock cycle 1 > Clock cycle 2 —— |
— e et
<—Ioa with nex
<AW> <AX> - Ay - ﬁi microinstruction here
e
Set*up AtU e
signals and available .
to drive shifter here
todrive - MAR is loaded
Drive H Propagation 2. Memory aCCeSS
and from shifter . .
Bbus toregisters ;. MDR is loaded with data
Figure 4-3. Timing diagram of one data path cycle. read from memory

. Data in MDR is available

(15)

Memory Access

A memory read initiated at cycle k delivers data
that can be used only in cycle k+2 or later!

Registers loaded
Shifter instantaneously from

output e ol A
Cycle 1 stable 9 Sge
starts
here Clock cycle 1 | Clock cycle ———
i k New sed to
<—load Ml next
<AW> <AX> - Ay - ﬁi microinstructi®g here
S e
S * AtU e
Sigfng,ps e available
to drive shifter here I
todrive MAR is loaded

- Memory access
;. MDR is loaded with data
Figure 4-3. Timing diagram of one data path cycle. read from memory

. Data in MDR is available

Drive H Propagation
and from shifter
B bus to registers

(16)

Memory Access

A memory read initiated at cycle k delivers data
that can be used only in cycle k+2 or later!

Registers loaded
Shifter instantaneously from

output C bus and memory on
Cycle 1 stable rising edge of clock
starts
here Clock cycle 1 > Clock cycle 4 ———|
i k New MPC used to
-<—load MIR with next
<AW> <AX> » Ay - ﬁi microinstruction here
R i e g
Set*up AtU e
signals and available .
to drive shifter here
todrive . MAR is loaded
Drive H Propagation 2. Memory access
and from shifter . .
Bbus foregisters . MDR is loaded with data
Figure 4-3. Timing diagram of one data path cycle. read from memory

. Data in MDR is available

(17)

Memory Access

A memory read initiated at cycle k delivers data
that can be used only in cycle k+2 or later!

Registers loaded
Shifter instantaneously from
C bus and memory on

Cycle 1 gg(gllg rising edge of clock
starts
here Clock cycle 1 >l clockeycle —— | < clock CyCle 3>
—] k New MPC used to
-<—load MIR with next
<AW> <AX> - Ay - ﬁi microinstruction here
IR
Seup | ALy
todrive | shiter here . MARis loaded
ata path
Drive H Propagation . Memory access
and from shifter . .
Bbus toregisters MDR is loaded with data
Figure 4-3. Timing diagram of one data path cycle. read from memory

. Data in MDR is available

(18)

Memory Access (2)

Until start of cycle k+2 the MDR register contains
old data

It is possible to issue consecutive requests, for
example at time k and k+1: corresponding results
will be available at k+2 and k+3

(19)

PC and MBR

ISA instructions

PC = Program Counter
MBR = Memory Buffer Register
Access also requires one clock cycle (k -> k+2)

MBR has two control signals for the B bus, for signed or
unsigned operations

One memory operation: fetch

(20)

H register

m— H

flLA_/
9\\ ALU

Is the A-input of the ALU

Has only one control signal; output to the ALU
IS always enabled

(21)

ISA, IJVM, Microarchitecture

ISA = Instruction Set Architecture
(defines instructions, memory model, available
registers,...)

IJVM = An example ISA (it's stack based
architecture)

The IJVM (Integer Java Virtual Machine) level
executes the IJVM Instruction set

The IJVM is (in this case) implemented by the
Mic-1 Microarchitecture

(22)

Mic-1 implementation

The Mic-1 is a microprogrammed architecture:
each IJVM instruction (Macroinstruction) is
divided one or more steps.

In each step, a microinstruction is executed by
the Mic-1.

Microinstructions are simpler than ISA
macroinstructions.

(23)

Control section

3 4 |
 =mx Gocoder MicroProgram Counter
< wor = ‘ MPC ((MPC)
L = 1 ,
______ ' — 8
o s 2o
b= e Control store
v holding
cPP__ = [Adar [JTALUT] © |M|23/||IR icroinstructions
TOS —
T N JAMN/JAMZ
= e e Microlnstruction Register

C bus

ALU
%"‘

L1 [11-bit flip—flop

/)

/]

{MIR) containing current
‘microinstruction

B bus

* Write
C bus

to register

Figure 4-6. The complete block diagram of our example mi-
croarchitecture, the Mic-1.

(24)

Microinstructions

36bit wide microinstructions

Microinstructions are “executed” in the control
section (“a CPU in the CPU")

Microinstructions basically drive control signals
for the data path.

To avoid the need for a real (micro)Program
Counter each microinstruction specifies the
address of the following one.

Microinstruction addresses are 9-bit wide

(25)

Microinstruction format (1)

Bits 9 3 8 9 3 4
JIJ|JIS|S|FF/|E|E]| I Hlo|T|Cc|L|S|PIM|MIW|R|E

M|A|AIL IR N[N|N[N POPVPCDA'IQE.EI. 5

NEXT _ADDRESS [P|M|M[L|A AlBlv|cl [c|s|pP RIRIT|AIC| &

cIN|Zz]s |1 A E(D|H Us

v AN ~ ~ ' Y

Addr JAM ALU C Mem B

B bus registers

0= MDR 5= LV
1=PC 6 =CPP

2 = MBR 7=TOS
3=MBRU 8=0PC
4 = SP 9-15 none

Figure 4-5. The microinstruction format for the Mic-1.

(26)

Microinstruction format (2)

Bits 9

w=Zm
OTVO
no-H
TTUO| ©
<r
oW
OT
0Z

>Zm
>LZ—
OZ2

bus

Z< P> | w
NZ P>«
corrwm
> 0w

Pl
m——x1=
O>rmai| w
TO—mm

9y

OTVZ -

<

Y

Mem B

0 4

JAM ALU
B bus registers

0= MDR 5=LV
1=PC 6 = CPP
Addr: Address of the 2=MBR 7=TOS
3=MBRU 8=0PC
next 4 = SP 9-15 none

microinstruction

Figure 4-5. The microinstruction format for the Mic-1.

(27)

Microinstruction format (3)

Bits 9 3 8 9 3 4
JIJIJIS|ISIFF/|E|E]| I Hlo|lT|c|L|S|P[M|IMIWIR|E
M|IA|AIL IR N[N|N[N POPVPCDA'IQE.EI. B
NEXT _ADDRESS [|P|M|M[L|A AlBlvIcl [cls|P RIRIT|A[C] §
CIN|Z]ls]|1 A E(D|H Us
Addr ALU C Mem B
B bus registers
0=MDR 5=LV
. 1=PC 6 = CPP
JAM: Determines 2=MBR 7=TOS
3=MBRU 8=O0PC
how to choose next s - Gdrroas

microinstruction

Figure 4-5. The microinstruction format for the Mic-1.

(28)

Microinstruction format (4)

Bits 9

>Z M
oZm
>LZ—
OrZ
OTVO
no-H

TTUO | ©
<r
oW
O

0Z

NEXT_ADDRESS
bus

ZI P | w
NS>
corrwm
> 0W

Pl
mM——20=
O>rmi|w
TO-mm

9y

OTVZ

<

W <

Mem

O <

Y e Y
Addr JAM
B bus registers

0=MDR 5=LV
1=PC 6 = CPP
ALU: Control 2=MBR 7=TOS

signals to choose AsSh = 8-15hons

ALU operations

Figure 4-5. The microinstruction format for the Mic-1.

(29)

Microinstruction format (5)

Bits 9 3 8 9 3 4
JIJJIS|ISIFF/|E|E]| I Hlo|T|Cc|L|S|PIM|MJW|R|FE

M|A|AIL IR N[N|N[N POPVPCDA'IQE.EI. 5

NEXT _ADDRESS [P|M|M[L|A AlBlvIcl |cls|pP RIRIT|AIC| &

cIN|Zz]s |1 A E(D|H Us

y . y g g

Addr JAM ALU Mem B

B bus registers

0= MDR 5=LV
e T 6 = CPP
C: Enables writing : 7-Tos

WU 8=0PC
from C bus to the S A= o
selected registers

Figure 4-5. The microinstruction format for the Mic-1.

(30)

Microinstruction format (6)

Bits 9

>2Zm
wZm
> Z—
Oz
OTVO
no-
TUO| ©
<r
Tw
OT
02
ars
m——x1=

NEXT_ADDRESS
bus

OTZ <«
2> | w
NS>
corrwm
> 0w
O>rmAo| w
TO—mm
9y

O <
® <

A&k J;M ALJ
B bus S
0=MDRE 5=Lv

Mem: Controls

memory
read/write/fetch

operations
Figure 4-5. The microinstruction format for the Mic-1.

(31)

Microinstruction format (7)

Bits 9 3 8 9
JIJIJIIS|S|Fo|F|E|E] I H{O|IT|C|L[S|P|M|M
MIAJA]JL|R N{N[N|N PIO|IP|V|P|C|D|A
NEXT_ADDRESS PIM[MJL|A A|B|V|C CIS|P RIR
C[N|Z]8 |1 A
Addr JAM ALU C

0 = MDR

" B: Controls which
‘register can write to
the B bus

Figure 4-5. The microinstruction format for the Mic-1.

(32)

Driving control signals

Memory control signals (rd, wr, fetch)

-~ :
v 4
: pr— MAR 4-to-16
Decoder
TTTTTTT
=2 MDR |
<— > MDR . J — .
| ‘FEEEIIIII ?
L [# A
—————— 8
—— _’V'_B_R_t’%;g 512 x 36-Bit
control store
) for holding
~ the microprogram
R
T MIR
CPP [Addr J[u] AU] ¢ [wm[B]
T L
TOS
A
oPC JAMN/JAMZ
£\
-
[Bbes b :
l < Control
6 N [1 [11-bit flip—flop signals
ALU ‘F Enable
z onto
l, B bus
Shifter #
2
O f Write
C bus
to register

Figure 4-6. The complete block diagram of our example mi-
croarchitecture, the Mic-1.

Registers loaded
instantaneously from

Shifter

output C bus and memory on
Cycle 1 stable rising edge of clock
starts /

I Clock cycle 24%

New MPC used to
|<«—load MIR with next
microinstruction here

here }——(—Clock cycle 1
S

Aw i AX Ay Az

T T)
f t MPC
Set up ALU .
signals and available
to drive shifter here
data path
Drive H Propagation

and from shifter

B bus to registers

Figure 4-3. Timing diagram of one data path cycle.

. MIR is loaded on the falling
edge of the clock based on the
MPC address, control signals
propagate

. ALU Operation: N and Z values
available and saved

(33)

Driving control signals

Memory control signals (rd, wr, fetch)

[:
v /
: pr— MAR 4-to-16
Decoder
TTTTTTT
= o | J
A
< — —— PC
/\
I
—>1 _'V'_B_F{ﬂ;ég
SP
2\
R
AN
cPP [Adar [J] A
/\
TOS
A
oPC JAMN/JAMZ
£\
High)
[1 Bbos bit 5
< Control
6 N [1 [11-bit flip—flop signals
ALU ‘F Enable
z onto
l, B bus
Shifter #
b 2
O f Write
C bus
to register

Figure 4-6. The complete block diagram of our example mi-
croarchitecture, the Mic-1.

Registers loaded
Shifter instantaneously from
output C bus and memory on

Cycled stable rising edge of clock
starts /

here }-ﬂ——(—CIock cycle 1 L I Clock cycle 24%

New MPC used to
|<«—load MIR with next
microinstruction here

S
Aw i Ax Ay Az

e R e
* % MPC
Set up ALU -
signals and available
to drive shifter here
data path
Drive H Propagation
and from shifter
B bus to registers

Figure 4-3. Timing diagram of one data path cycle.

MIR is loaded on the falling
edge of the clock based on the
MPC address, control signals
propagate

ALU Operation: N and Z values
available and saved

(34)

Driving control signals

Memory control signals (rd, wr, fetch)

l 3 P
v 4
pr—, MAR 4-to-16
S Decoder
TTTTTTT
=2 MDR |
<—f—> MDR . J MPG g
- I.'FEEEIIIII—/—
I — PC 1
A I Yy
—————— 8
——= _’V'_B_R_i’%;g 512 x 36-Bit
control store
) for holding
~ the microprogram
T
A\
MIR
CPP [Addr J[u] AU] ¢ [wm[B]
A\
TOS
A
PG JAMN/JAMZ
£\
High)
= Bihus bit ; .
4L Control
. N [1[11-bit flip—flop signals
ALU ‘F Enable
Z onto
l, B bus
a
C bus |||||I|

Figure 4-6. The complete block diagram of our example mi-

croarchitecture, the Mic-1.

Registers loaded
Shifter instantaneously from
output C bus and memory on
Cycle 1 stable rising edge of clock

starts /
here }——(—Clock cycle 1 L I Clock cycle 24%

New MPC used to
|<«—load MIR with next
microinstruction here

&»
Aw i AX Ay Az

e —

f f MPC
Set up ALU .
signals and available
to drive shifter here
data path

Drive H Propagation
and from shifter
B bus to registers

Figure 4-3. Timing diagram of one data path cycle.

MIR is loaded on the falling
edge of the clock based on the
MPC address, control signals
propagate

ALU Operation: N and Z values
available and saved

(35)

Next microinstruction (1)

MPC 9

512 x 3t
control ¢
for hold
8 1 the micropi
JMPC ﬂ
I

Addr | J | ALU .

. I
Addr[8]
JAMN/JAMZ
B bus tl;liltgh < '2
7N 1-bit flip—flop
/
Z

Addr (the address of the next
microinstruction coded in the current

microinstruction) is copied in the MPC
(lower 8 bits, high bit is 0)

If J is 000 the next address is in the MPC
and the next microinstruction can be read
from the control store (Note:
microinstruction are not stored in the same
order as Figure 4-17)

If J is not 000 it is necessary to compute
the next microaddress depending on the
values of J, N and Z (whose value has
been saved in flip-flop because the ALU
returns correct result as long as data is

passing through it)

(36)

Next microinstruction (2)

__ F"]"]F’]gz 9 If JAMN or JAMZ are set to 1, the 'High bit'
E l function computes the value of the high bit
~— 5 of the MPC as follows:
1 e
.l e rcld F = (JAMZ and Z) or (JAMN and N) or
N ‘ Addr[8]
JMPC iL
— | (To avoid confusion: Addr[8] is in fact the 9" bit, the highest, of
Addr [J] ALU . Addr, as bits count start from 0)
|]
AddI$] So the MPC can assume either the value
JAMN/JAMZ of Addr or the value of Addr with the high
bit ORred with 1
B bus tl;liitgh < :2
'7 N 1-bit flip—flop
/
Z

(37)

Next microinstruction (3)

MPG 9 F = (JAMZ and Z) or (JAMN and N) or
FEEE l Addr[8]
__ g;ftﬁ An example:
81 iy Let Addr <= OxFF (or we would get the
e ﬂ same value, OxFF in either case)
Adldr SIS Let JAMZ =1 (or JAMN = 1)
Addr[8] —_— —_
AMN/UAMZ Let Z=1 (or N=1)
— in this case MPC is Addr + 0x100 (for
B bus bitg * 2 example: if Addr=0x92, MPC = 0x92 + 0x100 = 0x192)
7 N Fotipiop Note: 0x100 = 256

(38)

Microinstructions (4)

...but why is all that stuff required to
determine the next microinstruction ?

Reason: efficiency

In case of conditional jumps (if..then..else) we normally need two
jJump addresses as parameter.

To uniform the microinstruction format we want all instruction to
have the same length: either we make all microinstruction
contain two addresses (-> waste of space) or (better solution) we
specify only one address and compute the second one as Addr +
Constant Value (in Mic-1 Constant Value = 0x100)

(39)

Next microinstruction (5)

MPC = ' '
9 l If JIMPC = 0, Addr is copied to MPC

If IMPC =1, the lower 8-bits of Addr are
512x 3¢ QRred with the MBR value, and the result

control ¢

forhold i put in the MPC

8 1 the micropi

IMPC ﬂ Normally when JMPC = 1, Addr is set to
T either 0x000 or 0x100

] I
. JMPC is used to jump to the address
JAMN/JAMZ specified by the MBR, which, as we will

see, contains the opcode of the ISA

S s High) instruction: in fact, microinstruction for

| = each macroinstruction are stored

/N EEEREE starting from the position determined by

/ > the opcode of the latter.

(40)

Next microinstruction (6)

MP 9 Example
—— : 'é' ISA instruction:
512 x 3t
__ control ¢
8 1 th

wBIPUSH opcode is 0x10

e
IMPC ﬂ corresponding microinstructions starts at
—T.Ta. address 0x10 in the control store

- |]
AddI(S] For the reasons explained in the previous
JAMN/JAMZ slides, it is clear that the next
microinstruction can be determined only
s High . whe_n the MBR, N and Z.are ready, i.e.
| starting from the successive clock pulse)
7N 1-bit flip—flop
/
Z

(41)

