

Submitted by Aditya C. Nadagouda

Submitted to Prof.Anna Zhukova

INDEX

- □Introduction.
- □Population genetic.
- Genetic variation in natural population.
 - i) Natural selection
- Type of natural selection
- □Phenotypic variation
- Polymorphism of chromosomal structure.

Population

Introduction

Population genetics is the study of change in the frequencies of allele and genotype within a population.

Population geneticists study the genetic structure of populations, and how they change geographically and over time.

Gene - a discrete unit of hereditary information consisting of

a specific nucleotide sequence in DNA.

Alleles - alternative forms of a gene.

Genotype - the genetic makeup of an individual.

Phenotype - the physical traits of an organism.

Hardy Weinberg States the inciple

 $(p+q)^2 p^2 + 2pq + q^2 = 1$ Under the certain condition, allelice frequences, remains constants from generation to generation.

If any one condition is not made, genetic equilibrium will be disturbed and the population may evolved.

Why Allele Frequencies Change

 Five evolutionary forces can significantly alter the allele frequencies of a population

- 1. Mutation
- 2. Migration
- 3. Genetic drift
- 4. Nonrandom mating
- 5. Selection

Mutatio

Errors in DNA replication

 The ultimate source of new variation

Migratio n

- Movement of individuals from one population to another
 - Immigration:movement into a population
 - Emigration: movement out of a population
- A very potent agent of change

Genetic Drift

Random loss of alleles

More likely to occur in smaller population

Founder effect

Small group of individuals establishes a population in a new location

Bottleneck effect

A sudden decrease in population size to natural forces

Nonrandom Mating

 Mating that occurs more or less frequently than expected by chance

Inbreeding

- Mating with relatives
- Increases homozygosity

Out breeding

- Mating with non-relatives
- Increases heterozygosity

Selectio

n

Some individuals leave behind more offspring than others

Artificial selection

 Breeder selects for desired characteristics

Natural selection

 Environment selects for adapted characteristics

Genetic Variation in Natural Populations

Brown-banded snall (Liguus fascilatus)

Yellow-banded snall

Gray squirrel (Sclurus carolinensis)

Albino squirrel

Yellow tiger swallowtall (Papillo glaucus)

Black tiger swallowtall

Types of

Phenotypic variation: it's a genetical basis morphological variation its some tie continuous and some time discontinuous.

e.g salmonberry and Two-spotted

ladybird

Genetic variance: the variance that is due to variation among individuals in the alleles that they have, excludes environmentally-caused variation

Natural selection

The natural selection is a process by which heritable traits that makes it more likely for an organisms to survive and successfully reproduced become more common in population over successive generation.

Forms of Selection

Three types of natural selection have been identified

- Stabilizing selection
 - Acts to eliminate *both* extreme phenotypes
- Disruptive selection
 - Acts to eliminate intermediate phenotypes
- Directional selection
 - Acts to eliminate a *single* extreme phenotype

Stabilizing

Selection
Its a type of <u>natural selection</u> in
which <u>genetic diversity</u> decreases
as the <u>population</u> stabilizes on a
particular trait value.

Stabilizing selection act to keep a population well adapted to its environment.

e.g. birth weight of human baby.

Disruptive Selection

the selection, describe change in population genetics in which extreme value for trait are favor over intermediate values.

- In the African seed-cracker finch, large- and small-beaked birds predominate
- Intermediate-beaked birds are at a disadvantage
 - Unable to open large seeds
 - Too clumsy to open small seeds

Directional

- Direction selection is a mode of natural selection in which a single phenotype is favored, causing the allele frequencies continuously shift in one direction.
- E.gindustrial melanism

Polymorphis

. Naturalists have described phenotypic variation within many species. For example,

Brown-banded snall (Liguus fascilatus)

Yellow-banded snall

Gray squirrel (Sclurus carolinensis)

Albino squirrel

Black tiger swallowtall

All these sorts of phenotypic differences are called polymorphisms

Grove snail; , <u>Cepaea</u> nemoralis

- Grove snail
- The grove snail, <u>Cepaea</u>
 <u>nemoralis</u>, is famous for the
 rich polymorphism of its
 shell. The system is
 controlled by a series of
 <u>multiple alleles</u>. The shell
 colour series is brown
 (genetically the top <u>dominant</u>
 trait), dark pink, light pink,
 very pale pink, dark yellow
 and light yellow (the bottom
 or universal <u>recessive</u> trait).

Chromosomal

polymorphism
Different length of p-arms of acrocentric chromosomes

Different extent of heterochromatin

Referenc

- Principle of
- genetics. By D. peter
- Genetics: robberd.
- f.weaver
- www.worlofteaching.co
- <u>m</u>
- www.vadlo.com
- www.google.co.in

Thank you

The palace of ladakh on a hillock