Genetic characteristics of human population

Submitted by Aditya C. Nadagouda Submitted to Prof.Anna Zhukova

INDEX

□Introduction. ^DPopulation genetic. Genetic variation in natural population. i) Natural selection □Type of natural selection Phenotypic variation ^DPolymorphism of chromosomal structure.

Population

Introduction

Population genetics is the study of change in the frequencies of allele and genotype within a population.

2. Population geneticists study the genetic structure of populations, and how they change geographically and over time.

```
Gene - a discrete unit of hereditary information 
consisting of
```

a specific nucleotide sequence in DNA.

Alleles - alternative forms of a gene.

Genotype - the genetic makeup of an individual.

Phenotype - the physical traits of an organism.

Hardy Weinberg States tharinciple

(p+q)² p² + 2pq + q² =1 Under the certain condition,allelice frequences,remains

constants from generation to generation.

If any one condition is not made, genetic equilibrium will be disturbed and the population may evolved.

Why Allele Frequencies Change

- Five evolutionary forces can significantly alter the allele frequencies of a population
 - 1. Mutation
 - 2. Migration
 - 3. Genetic drift
 - 4. Nonrandom mating
 - 5. Selection

Mutatio

- Errors in DNA replication
- The ultimate source of new variation

Migratio n

- Movement of individuals from one population to another
 - Immigration: movement into a population
 - Emigration: movement out of a population
- A very potent agent of change

Genetic Drift

Random loss of alleles

- More likely to occur in smaller population
- Founder effect
 - Small group of individuals establishes a population in a new location
- Bottleneck effect
 - A sudden decrease in population size to natural forces

Nonrandom Mating

- Mating that occurs more or less frequently than expected by chance
- Inbreeding
 - Mating with relatives
 - Increases homozygosity
- Out breeding
 - Mating with non-relatives
 - Increases heterozygosity

Selectio

- Some individuals leave behind more offspring than others
- Artificial selection
 - Breeder selects for desired characteristics
- Natural selection
 - Environment selects for adapted characteristics

Genetic Variation in Natural Populations

Brown-banded snall (Liguus fasciatus)

Yellow-banded snall

Gray squirrel (Sciurus carolinensis)

Yellow tiger swallowtall (Papillo glaucus)

Albino squirrel

Black tiger swallowtall

Types of Phenotypicitification: it's a genetical basis morphological variation its some tie continuous and some time discontinuous. **e.g salmonberry and** Two-spotted ladybird

Genetic variance: the variance that is due to variation among individuals in the alleles that they have, excludes environmentally-caused variation

Natural selection

The natural selection is a process by which heritable traits that makes it more likely for an organisms to survive and successfully reproduced become more common in population over successive generation.

Forms of Selection

Three types of natural selection have been identified

Stabilizing selection

- Acts to eliminate *both* extreme phenotypes
- Disruptive selection
 - Acts to eliminate intermediate phenotypes
- Directional selection
 - Acts to eliminate a *single* extreme phenotype

Stabilizing Selection Its a type of <u>natural selection</u> in which genetic diversity decreases as the **population** stabilizes on a particular trait value. Stabilizing selection act to keep a population well adapted to its environment. e.g. birth weight of human baby.

Disruptive Selection

- the selection, describe change in population genetics in which extreme value for trait are favor over intermediate values.
- In the African seed-cracker finch, large- and small-beaked birds predominate
- Intermediate-beaked birds are at a disadvantage
 - Unable to open large seeds
 - Too clumsy to open small seeds

Directional Direction selection is a mode of natural selection in which a single phenotype is favored, causing the allele frequencies continuously shift in one direction.

• E.gindustrial melanism

Polymorphis

. Naturalists have described phenotypic variation within many species. For example,

Brown-banded snall (Liguus fasciatus)

Gray squirrel (Sclurus carolinensis)

Yellow tiger swallowtall (Paplilo glaucus)

Yellow-banded snall

Albino squirrel

Black tiger swallowtall

All these sorts of phenotypic differences are called *polymorphisms*

Grove snail; , <u>Cepaea</u> nemoralis

Grove snail

The grove snail, <u>Cepaea</u> <u>nemoralis</u>, is famous for the rich polymorphism of its shell. The system is controlled by a series of <u>multiple alleles</u>. The shell colour series is brown (genetically the top <u>dominant</u> trait), dark pink, light pink, very pale pink, dark yellow and light yellow (the bottom or universal <u>recessive</u> trait).

Chromosomal polymorphism Different length of p-arms of acrocentric chromosomes

Different extent of heterochromatin areas

Referenc Principle of genetics. By D. peter Genetics :rshustad. f.weaver www.worlofteaching.co m www.vadlo.com www.google.co.in

Thank you

The palace of ladakh on a hillock