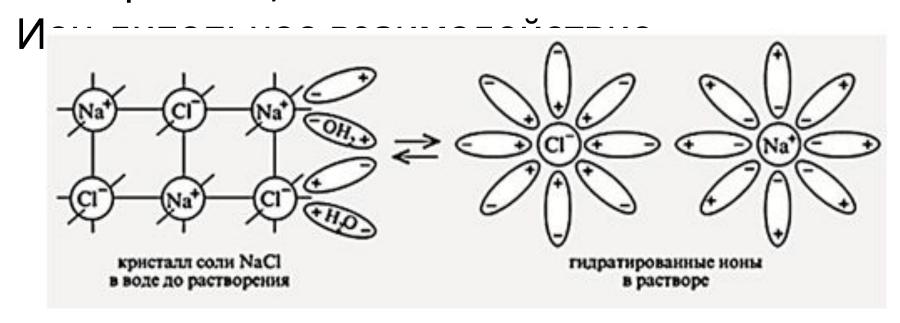
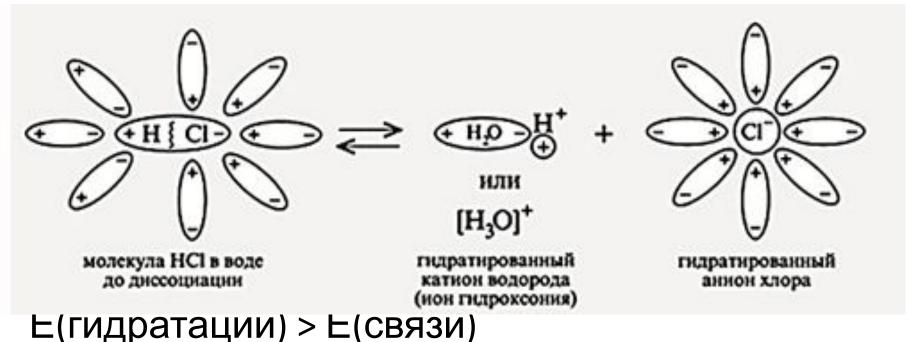

Электролитическая диссоциация. Реакции ионного обмена

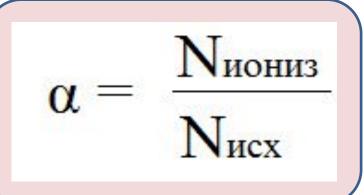


Электролиты – вещества, которые в растворе или расплаве распадаются на заряженные частицы – ионы

Процесс распада электролитов на ионы в водных растворах и расплавах называется электролитической диссоциацией.



Ионные кристаллы (истинные электролиты)


$$E(гидратации) > E(решетки)$$
 $NaCl + (n+m) H_2O \rightarrow Na^+ \cdot n H_2O + Cl^- \cdot m H_2O$
 $NaCl \rightarrow Na^+ + Cl^-$

Полярные молекулярные вещества (потенциальные электролиты) Диполь-дипольное взаимодействие


 $HCI + (n+m) H_2O \rightarrow H^+ \cdot n H_2O + CI^- \cdot m H_2O$ $HCI + H_2O \rightarrow H_3O^+ + CI^-$

Для молекулярных электролитов Степень диссоциации (ионизации):

Сильные электролиты.

- 1) соли;
- 2) щелочи LiOH, NaOH, KOH, RbOH, CsOH, Ba(OH) $_2$, Ca(OH) $_2$, Sr(OH) $_2$;
- 3) кислоты ($\alpha = 1$) H_2SO_4 , HCl, HNO₃, HBr, HI, HClO₄, HMnO₄;

HCI

d = 0.013

Кислоты – электролиты, которые при диссоциации в качестве катионов образуют *только* ионы H⁺

$$HCI \rightarrow H^+ + CI^-$$

$$H_2SO_4 \rightarrow H^+ + HSO_4^- (I ступень)$$

 $HSO_4^- \rightarrow H^+ + SO_4^{2-} (II ступень)$

Основания – электролиты, которые при диссоциации в качестве анионов образуют *только* ОН⁻

NaOH
$$\rightarrow$$
 Na⁺ + OH⁻
NH₃ + H₂O \rightleftharpoons NH₄⁺ + OH⁻

$$Mg(OH)_2 \longrightarrow (MgOH)^+ + OH^- (I ступень)$$

 $(MgOH)^+ \longrightarrow Mg^{2+} + OH^- (II ступень)$

Амфотерные гидроксиды (амфолиты) – электролиты, которые могут диссоциировать как по кислотному, так и по основному типу

$$\Rightarrow$$
 Be(OH)₂ \leftrightarrow Be²⁺ + 2OH⁻ (основный тип)

$$Be(OH)_2 + 2H_2O$$
 $\stackrel{\longrightarrow}{=}$ $2H^+ + [Be(OH)_4]^{2-}$ (кислотный тип)

Ступенчато диссоциируют кислые, основные и комплексные соли:

$$KHCO_3 \rightarrow K^+ + HCO_3^-$$

 $HCO_3^- \rightleftharpoons H^+ + CO_3^{2-}$

$$(CuOH)NO_3 \rightarrow Cu(OH)^+ + NO_3^-$$

 $(CuOH)^+ \qquad Cu^{2+} + OH^-$

$$Na_{2}[Zn(OH)_{4}] \rightarrow 2 Na^{+} + [Zn(OH)_{4}]^{2-}$$
 $[Zn(OH)_{4}]^{2-} \rightarrow Zn^{2+} + 4 OH^{-}$

Средние, двойные и смешанные соли диссоциируют в одну стадию!

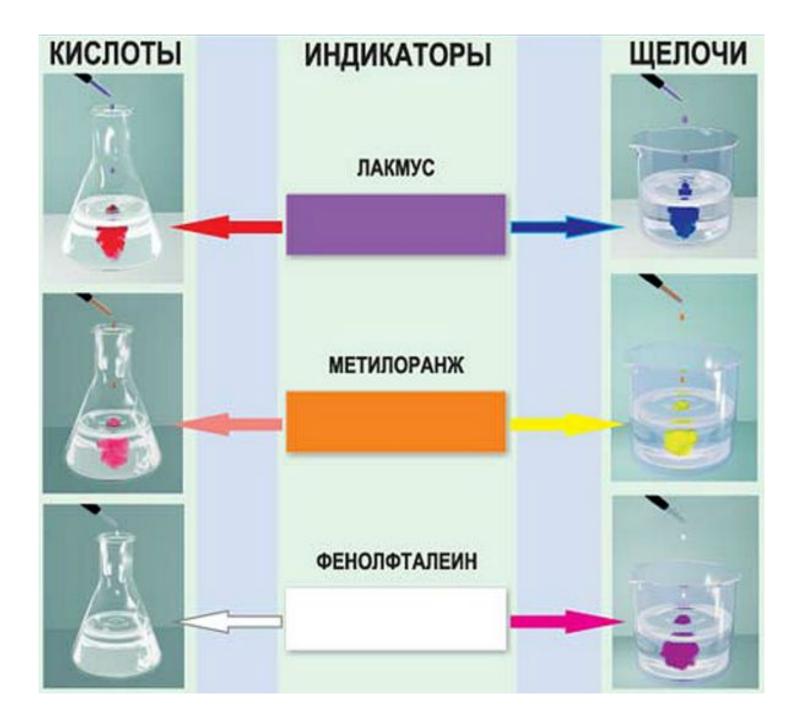
$$CaCl_2 \rightarrow Ca^{2+} + 2Cl^{-}$$

$$Al_2(SO_4)_3 \rightarrow 2Al^{3+} + 3SO_4^{2-}$$

$$KFe(SO_4)_2 \rightarrow K^+ + Fe^{3+} + SO_4^{2-}$$

Диссоциация воды

$$H_2O \rightleftharpoons H^+ + OH^ [H^+] \cdot [OH^-] = K_W^- -$$
 константа автопротолиза $K_W^- = 10^{-14}$ при 25^0C следовательно, $[H^+] = [OH^-] = 10^{-7}$


Водородный показатель (рН) – десятичный логарифм молярной концентрации ионов водорода, взятый со знаком «минус»

 $pH = - \lg[H^{\dagger}]$

При
$$[H^+]=[OH^-]=10^{-7}$$
, $pH=-lg10^{-7}=7-нейтральная среда$

при [H⁺] > 10⁻⁷, pH < 7 – среда кислая

при [H⁺] < 10⁻⁷, pH > 7 – среда щелочная

Реакции ионного обмена

В виде ионов записываются только сильные и растворимые в воде электролиты

Реакции ионного обмена всегда протекают в сторону связывания ионов. Ионы связываются с образованием газа; осадка; слабого электролита

Реакция нейтрализации

1) Сильная кислота + щелочь с образованием растворимых солей

$$Ba(OH)_2 + 2HNO_3 \rightarrow Ba(NO_3)_2 + 2H_2O$$

 $Ba^{2+} + 2OH^- + 2H^+ + 2NO_3^- = Ba^{2+} + 2NO_3^- + 2H_2O$
(полная ионная форма)

$$OH^- + H^+ \rightarrow H_2O$$

2) Сильная кислота + щелочь с образованием нерастворимых солей

$$Ba(OH)_2 + H_2SO_4 \rightarrow BaSO_4 \downarrow + 2H_2O$$

 $Ba^{2+} + 2 OH^- + 2H^+ + SO_4^{2-} \rightarrow BaSO_4 \downarrow + 2H_2O$

3) Реакции с участием слабого электролита

$$HNO_3 + NH_3 \rightarrow NH_4NO_3$$

 $H^+ + NH_3 \rightarrow NH_4^+$

$$H_2S + 2KOH \rightarrow K_2S + 2 H_2O$$

 $H_2S + 2OH^- \rightarrow S^{2-} + 2 H_2O$

$$AI(OH)_3 + KOH \rightarrow K[AI(OH)_4]$$

 $AI(OH)_3 + OH^- \rightarrow [AI(OH)_4]^-$

Реакции нейтрализации протекают всегда, если хотя бы один исходный электролит сильный

4)

Реакция нейтрализации между двумя слабыми электролитами возможна, если продукт реакции (соль) существует в присутствии воды

$$H_2S + 2NH_3 \rightarrow (NH_4)_2S$$

 $H_2S + 2NH_3 \rightarrow 2NH_4^+ + S^{2-}$

 $Mg(OH)_2 + 2HF \rightarrow MgF_2 \downarrow + 2H_2O$ ионная форма отсутствует

 $Al(OH)_3 + H_2S \neq -$ реакция не идет

5) Неполная нейтрализация в избытке кислоты:

$$H_{2}SO_{4} + KOH \rightarrow KHSO_{4} + H_{2}O$$
 $2H^{+} + SO_{4}^{2-} + OH^{-} \rightarrow HSO_{4}^{-} + H_{2}O$
в избытке основания:

Fe(OH)₃ + 2HCl
$$\rightarrow$$
 Fe(OH)Cl₂ + 2 H₂O
Fe(OH)₃ + 2H⁺ \rightarrow Fe(OH)²⁺ + 2 H₂O

Гидролиз солей

Реакция обмена между ионами соли и молекулами воды

Не подвергаются гидролизу соли:

- Образованные *только* сильными электролитами (NaCl, KNO $_3$, RbBr, Cs $_2$ SO $_4$, KClO $_3$ и др.);
- Нерастворимые;

1) Соль, образованная сильным основанием и слабой кислотой

- гидролиз ПО АНИОНУ

К₃РО₄ – соль, образованная слабой кислотой и сильным основанием.

$$PO_4^{3-} + HOH \rightleftharpoons HPO_4^{2-} + OH^{-}$$
 $K_3PO_4 + H_2O \rightleftharpoons K_2HPO_4 + KOH$
 OH^{-} - среда щелочная; $pH > 7$

2) Соль, образованная слабым основанием и сильной кислотой

- гидролиз ПО КАТИОНУ

<u>Cu</u>Cl₂ – соль, образованная слабым основанием и сильной кислотой.

$$Cu^{+2} + HOH \rightleftharpoons CuOH^+ + H^+$$

$$CuCl_2+H_2O \rightleftharpoons (CuOH)Cl + HCl$$

Н⁺- среда кислая; рН < 7

3) Соль, образованная слабым основанием и слабой кислотой

- гидролиз ПО КАТИОНУ И ПО АНИОНУ

Гидролизуются соли – Al_2S_3 , Cr_2S_3 (необратимо)

$$Al_2S_3 + H_2O \square Al(OH)_3\downarrow + H_2S\uparrow$$

 NH_4F , CH_3COONH_4 (обратимо) $NH_4F + H_2O \rightleftharpoons NH_3 \cdot H_2O + HF$

Совместный гидролиз

1) Соли металлов со степенью окисления +3 и соли летучих кислот (карбонаты, сульфиды, сульфиты)

$$\downarrow \text{Me(OH)}_{3} \left\{ \begin{array}{l} \text{A1}^{3+} & \text{S}^{2-} - - - - \text{H}_{2}\text{S} \uparrow \\ \text{Cr}^{3+} & \text{SO}_{3}^{2-} - - - \text{SO}_{2} \uparrow \\ \text{Fe}^{3+} & \text{CO}_{3}^{2-} - - - \text{CO}_{2} \uparrow \end{array} \right.$$

$$2AICI_3 + 3K_2S + 6H_2O \rightarrow 2AI(OH)_3\downarrow + 3H_2S\uparrow + 6KCI$$

$$2NH_4Cl + Na_2SiO_3 \rightarrow 2NH_3\uparrow + H_2SiO_3\downarrow + 2NaCl$$

2) Соли металлов со степенью окисления +2 (кроме кальция, стронция и бария) и растворимые карбонаты - образуется осадок ОСНОВНОГО КАРБОНАТА металла:

$$2 \operatorname{CuCl}_{2} + 2\operatorname{Na}_{2}\operatorname{CO}_{3} + \operatorname{H}_{2}\operatorname{O} \longrightarrow (\operatorname{CuOH})_{2}\operatorname{CO}_{3} \downarrow + \\ + \operatorname{CO}_{2}\uparrow + 4 \operatorname{NaCl}$$

Гидролиз - эндотермический процесс KF + H₂O ≠ HF + KOH – Q

Какие факторы усиливают гидролиз?

- Нагревание
- Добавление воды

<u>Как подавить (ослабить) процесс</u> <u>гидролиза?</u>

- Раствор делают максимально концентрированным;
- Для смещения равновесия влево добавляют один из продуктов гидролиза кислоту, если идёт гидролиз по катиону или щёлочь, если идёт гидролиз по аниону.