
Compiler and Interpreter



A compiler is computer software that 
transforms computer code written in one 
programming language (the source 
language) into another programming 
language (the target language). 



Lexical analysis is the extraction of individual words or lexemes from an input 
stream of symbols and passing corresponding tokens back to the parser.

Syntactic analysis, or parsing, is needed to determine if the series of tokens given 
are appropriate in a language - that is, whether or not the sentence has the right 
shape/form.

Code generation (object Code) is final phase of compilation. Through postcode 
generation, optimization process can be applied on the code, but that can be seen 
as a part of code generation phase itself. 



The purpose of a 'compiler' is to translate source code into machine code.

A compiler translates the whole program as one complete unit

It creates an executable file

It is able to report on a number of errors in the code

It may also report spurious errors

It does not need to be present in order to run the code

It can optimise source code to run as fast or as efficiently as possible

Code portability - a compiler can target different processors using the

same source code



Interpreter is a computer program that is used to 
directly execute program instructions written using 
one of the many high-level programming 
languages



Summary



How Java is compiled & interpreted?

When you write a java program, the javac compiler converts your 
program into something called byte code. All the java programs run 
inside a jvm (this is the secret behind java being cross-platform 
language). Bytecode compiled by javac, enters into jvm memory and 
there it is interpreted by another program called java. 
This java program interprets bytecode line-by-line and converts it 
into machine code to be run by the jvm. Following flowchart shows 
how a java program executes.




