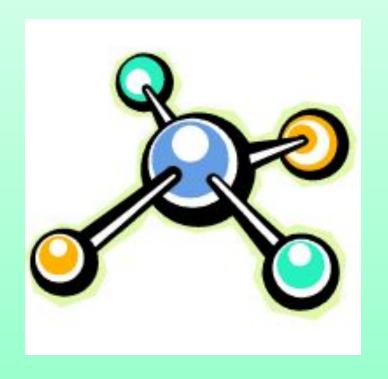
ЛЕКЦИЯ 4

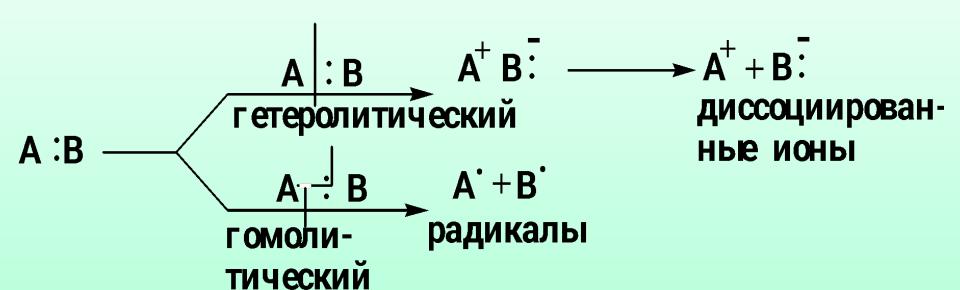
Классификация и механизмы органических реакций

План

- 4.1. Классификация органических реакций
- 4.2. Классификация реагентов
- 4.3. Реакции радикального замещения (S_R)
- 4.4 Реакции электрофильного присоединения (A_к)


4.1 Классификация органических реакций

- по направлению
 Реакции замещения \$
 Реакции присоединения А
 Реакции элиминирования
 Е
- **Молекулярные** перегруппировки


• по молекулярности Мономолекулярные Бимолекулярные Тримолекулярные

По способу разрыва и образования связей

- Гетеролитические (ионные)
- * электрофильные
- * нуклеофильные
- Гомолитические
- (радикальные)
- Молекулярные

Схема разрыва химических связей

Схема образования химических связей

$$A^{+}+B^{-}$$
 \longrightarrow A — В гетеролитическое.

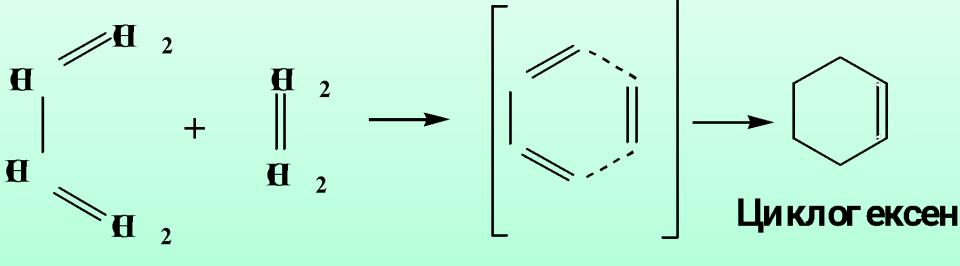
Гетеролитические реакции называют ионными, поскольку они сопровождаются образованием органических ионов, протекают в органических растворителях

Гомолитические реакции протекают преимущественно в газовой фазе

Гетеролитические реакции в зависимости от электронной природы атакующей частицы делят на нуклеофильные (символ N) и электрофильные (символ E). При этом условно принято считать одну из взаимодействующих частиц реагентом, а другую субстратом, на которую действует реагент

Субстрат – молекула, которая поставляет атом углерода для образования новой связи

Тип реакции (нуклеофильный или электрофильный) определяется характером реагента


Реагент с неподеленной электронной парой, взаимодействующий с субстратом, имеющим недостаток электронов, называют «нуклеофильным» (любящим, ищущим ядро), а реакции нуклеофильными

Реагент с электронным дефицитом, взаимодействующий с субстратом, обладающим избытком электронов, называют «электрофильным», а реакцию электрофильной

Нуклеофильные и электрофильные реакции всегда связаны между собой

Реакции, сопровождающиеся одновременным (согласованным) разрывом и образованием связей, называют молекулярными (синхронными, согласованными)

Диеновый синтез

4.2. Классификация реагентов К нуклеофильным реагентам

К нуклеофильным реагентам относят молекулы, содержащие одну или более неподеленных пар электронов; ионы, несущие отрицательный заряд (анионы); молекулы, имеющие центры с повышенной плотностью

Нуклеофильные реагенты

• нейтральные молекулы, имеющие неподеленные пары электронов:

 $\ddot{N}H_3$; $R - \ddot{N}H_2$; $R_2 - \ddot{N}H$; $R_3\ddot{N}$; $H_2\ddot{O}$; $R - \ddot{O}H$; $R - \ddot{O} - R$;

• анионы:

OH⁻; CN⁻; NH₂⁻; RCOO⁻; RS⁻; Cl⁻; Br⁻; I⁻; HSO₃⁻;

Нуклеофильные реагенты

 соединения, содержащие центры с повышенной электронной плотностью:

$$c = c ; -c = c ; -c$$

Электрофильные реагенты

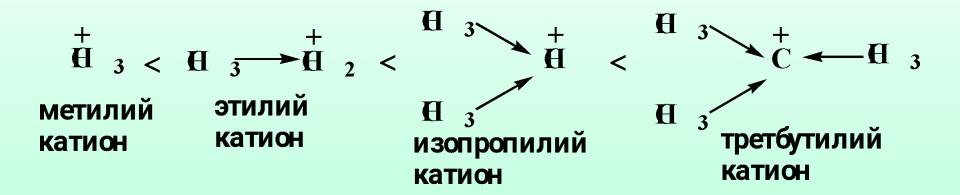
нейтральные молекулы, имеющие вакантную орбиталь:
 SO₃, кислоты Льюиса (AlCl₃, SnCl₄, FeBr₃, BF₃)

• катионы: протон (H^+) , ионы металлов (Me^{n+}) , SO_3H^+ , NO_2^+ , NO^+

• молекулы, имеющие центры с пониженной электронной плотностью: галогенпроизводные углеводородов $R^{\delta+}$ — $Hal^{\delta-}$, галогены (Cl_2, Br_2, I_2) , соединения с карбонильной группой:

В органической химии реакции, как правило протекают в несколько стадий, т.е. с образованием промежуточных, короткоживущих частиц (интермедиаты): карбкатионы, карбанионы, радикалы

Карбкатионы — положительно заряженные частицы, атом углерода, несущий положительный заряд находится в sp² — гибридизации.

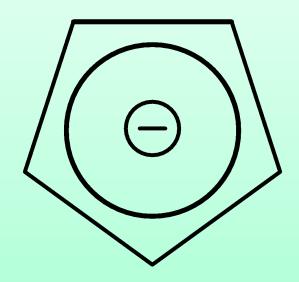

Атом углерода с приобретением положительного заряда изменяет свое валентное состояние от sp³ до sp², что энергетически более выгодно.

Важной характеристикой карбкатионов является их устойчивость, которая определяется степенью делокализации положительного заряда

Устойчивость карбкатионов падает в ряду:

третичный атом С > вторичный > атом С > первичный > атом С

Устойчивость карбкатионов


У ВЕЛИЧЕНИЕ У СТОЙЧИВОСТИ

Карбанионы – отрицательно заряженные частицы, заряд которых обусловлен наличием в их структуре атома С с неподеленной электронной парой. При этом атом углерода, несущий отрицательный заряд, может быть как в sp², так и в sp³-гибридизации

Устойчивость карбанионов зависит от степени делокализации отрицательного заряда на атоме углерода. Чем она выше, тем выше их устойчивость и тем ниже их реакционная способность. Наиболее устойчивы циклические карбанионы, в структуре которых имеется общая π электронная плотность, включающая в себя

4n+2 π-электрона

циклопентадиенил анион

Свободные радикалы — любая электронейтральная активная частица, содержащая одноэлектронную орбиталь.

К свободным радикалам могут быть отнесены частицы, содержащие неспаренный электрон не только на атоме углерода (С·), но и на других атомах: R₂N·; RO·

4.3. Реакции радикального $замещения (S_R)$

Реакции S_R характерны для соединений алифатического и алициклического рядов. Как правило, они протекают по цепному механизму, основными стадиями которого являются: инициирование, развитие (рост цепи) и обрыв цепи.

На стадии инициирования образуются свободные радикалы, дающие начало цепному процессу

Свободные радикалы могут возникать за счет термического или фотохимического инициирования, а также в результате ОВ реакций

Реакции радикального замещения (S_R)

$$\mathbf{R}$$
 + \mathbf{A} $\xrightarrow{\mathbf{h}\mathbf{v}}$ \mathbf{R} + \mathbf{N} субстрат реагент продукт реакции

Механизм реакции радикального замещения (S_R)

1. Инициирование

$$\frac{hv}{} > 2A^{\bullet}$$

2. Развитие цепи

$$A' + R \longrightarrow R' + M$$

$$R' + A \longrightarrow R + A'$$

3. Обрыв цепи

$$R^{\bullet} + R^{\bullet} \longrightarrow R$$

$$A^{\bullet} + R^{\bullet} \longrightarrow R$$

$$A^{\bullet} + A^{\bullet} \longrightarrow A$$

Легкость отрыва атома H от углерод-атома падает в ряду углеводородов

$$H_{3}C$$
 $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{4}C$ $H_{5}C$ H

Радикалы брома (Br') обладают высокой избирательностью: если в молекуле имеются вторичный, а тем более третичный атом углерода, то бромирование преимущественно идет у третичного (вторичного) атома углерода. Такие реакции называются региоселективными (избирательными по месту действия) реакциями

Бромирование алканов (региоселективные реакции)

$$H_3C$$
— H_3 + H_3C — H_3 —

2-бромпропан

Механизм реакции бромирования алканов

1. Инициирование

$$B_2 \xrightarrow{hv} 2Br'$$

2. Развитие цепи

$$\mathbf{B} \cdot + \mathbf{H}_{3}\mathbf{C} - \mathbf{H} \quad -\mathbf{H}_{3} - \mathbf{H}_{3}\mathbf{C} - \mathbf{H}_{3}\mathbf{H}$$

$$B_2 + H_3C - \dot{H} - H_3 - H_3C - H_3 - H_3C - H_3 - H_3 - H_3C - H_3 - H_3C -$$

3. Обрыв цепи

$$H_3C$$
— \dot{H} — H_3 + B · —— H_3C — H — H_3 B

$$B \cdot + B \cdot \longrightarrow B_2$$

$$H_3C$$
— \dot{H} + H_3C — \dot{H} — H_3C — H — H 3 —

4.4. Реакции электрофильного присоединения

Электрофильное присоединение (A_E) характерно для ненасыщенных систем, содержащих двойные или тройные связи.

Нуклеофильный характер таких соединений обусловлен наличием π-связи, которая представляет собой область с повышенной электронной плотностью, обладает поляризуемостью и легко разрывается под действием электрофильных реагентов

Механизм реакции АЕ

$$C = C$$
 $+ X \rightarrow Y$ $+ X \rightarrow$

Галогенирование

Гидрирование

$$C = C + H_2 \xrightarrow{t, Kt} C \xrightarrow{H}$$

Гидрогалогенирование

$$C = C + H$$

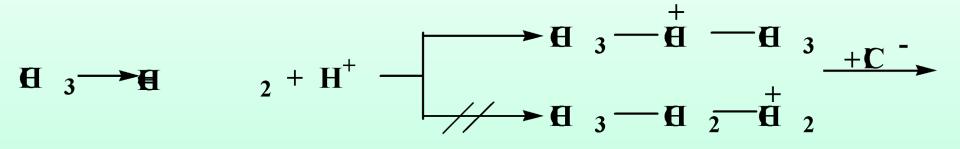
$$H$$

Гидратация

$$C = C + H$$

$$H^+$$

$$C = C$$


Правило Марковникова: при взаимодействии реагентов типа НХ с несимметричными алкенами, водород присоединяется к наиболее гидрогенизированному атому углерода

<u>Владимир</u> <u>Марковников</u> (1837 – 1904)

Гидрогалогенирование алкенов по правилу Морковникова

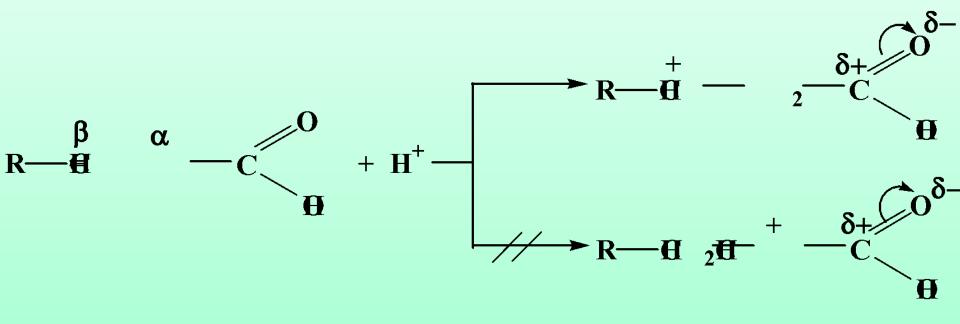
Механизм реакции гидрогалогенирования

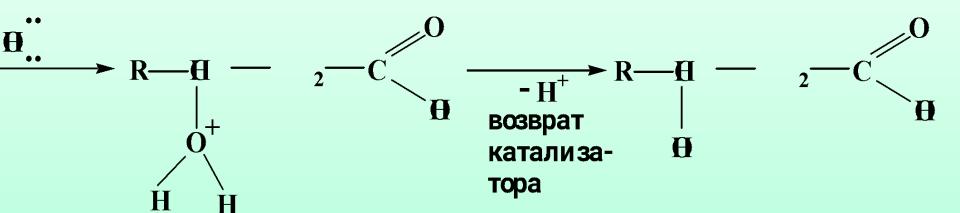
Схема реакции гидратации алкенов

$$H_2C = CH_2 + H_2O \xrightarrow{H^+} H_3C \xrightarrow{H}_2$$

Этанол

Механизм реакции гидратации алкенов


$$H_2C = CH_2 + H^+ \longrightarrow H_3C \longrightarrow H_3C \longrightarrow$$



Оксониевый катион

Классическое правило Марковникова идеально применимо только к самим алкенам, в случае их производных необходимо учитывать и механизм реакции и устойчивость образующихся интермедиатов

Механизм реакции гидратации ненасыщенных карбоновых кислот против правила Морковникова

β-гидрокси кислота

Такого типа гидратация in vivo является частью процесса β-окисления ненасыщенных жирных кислот в организме

Сопряженные системы (алкадиены) термодинамически наиболее устойчивы, поэтому часто встречаются в природе.

Реакции A_E с такими диенами протекают с образованием двух продуктов

1,4- и 1,2-присоединения

Реакции А_Е в ряду алкадиенов

$$H_2C = CH$$
— $CH = CH_2 + H$
 H_3C — H_3C

Реакции А_Е в ряду алкадиенов

Механизм реакции

$$H_{2}C = CH - CH = CH_{2} + H^{+}$$

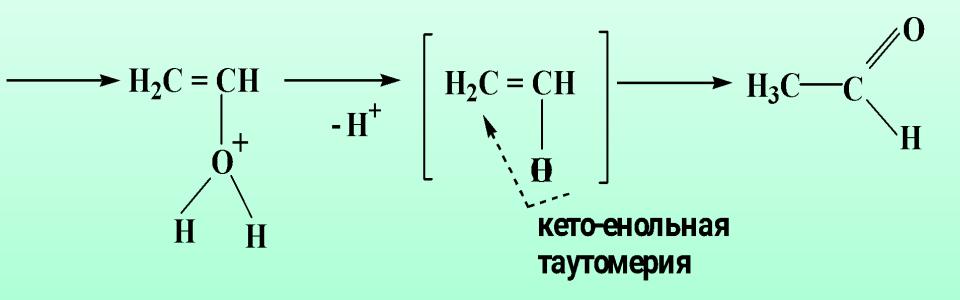
$$H_{3}C - H$$

$$H_{3}C - H$$

$$CH = CH_{2}$$

Легко переходят друг в друга

Схема реакции гидратации ацетилена (реакция Кучерова)


$$\mathbf{H} = \mathbf{H} + \mathbf{H} \qquad \xrightarrow{\mathbf{H}^{+}, \mathbf{Hq}^{2+}} \mathbf{H}_{3}\mathbf{C} - \mathbf{C}$$

Этаналь Уксусный альдегид

Механизм реакции гидратации ацетилена

$$\mathbf{H} = \mathbf{H} + \mathbf{H}^{+} \longrightarrow \mathbf{H}_{2}\mathbf{C} = \mathbf{C}\mathbf{H} \xrightarrow{+ \mathbf{H}_{1}} \longrightarrow$$

Механизм реакции гидратации ацетилена

Схема реакции гидратации производных ацетилена

$$H_3C$$
— $C = H + H$

$$\frac{H_7^+ Hq^{2+}}{H_3C} H_3C$$
 $C = H _3$

$$O$$

$$A = A = A$$

$$A = A = A$$

Механизм реакции гидратации производных ацетилена

$$H_3C$$
— $C = H$ $+ H^+$ \longrightarrow H_3C — $C = CH_2$ $\xrightarrow{+H}$..

Механизм реакции гидратации производных ацетилена

$$H_3C \longrightarrow C = CH_2$$

$$-H^+$$

$$H_3C \longrightarrow C = CH_2$$

$$H$$

Благодарим за внимание!

