Математический анализ (ю)

Лекция - 2

<u> Логическая символика</u>

Умение логически мыслить - **логика** - является основным инструментом процесса математического анализа.

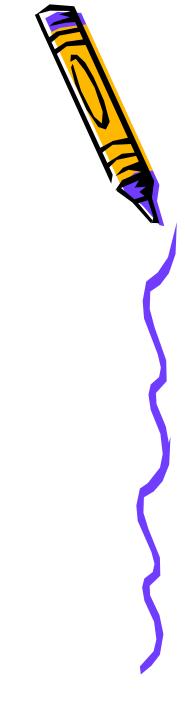
Логика в математике

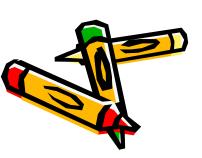
- наука о способах доказательств и опровержений;
- совокупность научных теорий с доказательствами и опровержениями
 - 1. Конъюкцией высказываний относительно p и q называют высказывание, которое истинно только тогда, когда оба высказывания (и p , и q) истинны. Логический символ конъюкции Λ заменяет союз "и"
 - 2. Дизъюкцией высказываний относительно р и q называют высказывание, которое ложно в том и только в том случае, когда оба высказывания (и р , и q) ложны, а истинно, когда хотя бы одно из них (р или q) истинно. Логический символ дизъюкции V заменит союз "или".

- 3. Импликацией (следование) высказываний относительно **р** называют высказывание, которое ложно тогда и только тогда, **р** истинно, а **q** ложно. Логический символ импликацией используют при указании на последствия некоторого факта. Он заменит словосочетание "если ..., то ..." или "**р** влечет **q**".
- 4. Символ **эквиваленции** ⇔ означает, что высказывание истинно только тогда, когда оба высказывания р и q истинны или оба высказывания ложны. Этот символ заменяется термином "равносильно".
- 5. Отрицание высказыванием *р* называют высказывание ¬ *р*, которое истинно, если *р* ложно, и ложно, когда *р* истинно. Логический символ отрицания используют при указании на последствия некоторого факта; оно заменяет слово " не ".

Для сокращения и уточнения записей высказываний вводятся знаки:

- ∀ квантор общности (логический эквивалент слов "все" каждый");
- **З** <u>квантор существования</u> (логический эквивалент слова "некоторый"),
 - \blacksquare , \blacksquare символы принадлежности или непринадлежности например, выражение "для всякого элемента x множества E " записывается в виде $\forall x \in E$; выражение "... существует по крайней мере один элемент множества E , такой что ... " записывается как $\exists x \in E$
 - ¬ A символ отрицания высказывания A





Действительные числа

Действительные (вещественные) числа образуют множество элементов с <u>определенными свойствами</u>:

Свойства упорядочности, определяемое соотношениями между элементами — a < b, a = b или a > b; при этом, если a < b и b < c, то a < c — свойство транзитивность упорядочности.

- 1. натуральные числа $\mathbb{N} = \{1, 2, 3, ...\}$ невыполнимо вычитание
- 2. целые числа $\mathbb{Z} = \{..., -1, 0, 1, 2, ...\}$ невыполнимо деление
- 3. рациональные числа $\mathbb{Q} = \{ p/q \}, p, q \in \mathbb{Z}$ невыполнимо извлечение корня из положительных чисел
- 4. вещественные числа \mathbb{R} невыполнимо извлечение корня из отрицательного числа.
- комплексные числа С − выполнимы все операции

<u>Функции</u>

Определение

<u>Отображением</u> **f** множества X в множество Y, или **функцией**, определенной на множестве X со значениями в множестве Y, называют **соответствие**, которое каждому элементу $x \in X$ соотносит некоторый единственный элемент $y \in Y$.

Множество У называют областью определения функции, элемент

 $x \in X$ - аргументом функции, а элемент $y \in Y$ - зависимым переменным. Областью значений функции f называют множество

$$f(X) = \{ y \in Y : y = f(x) \ \forall x \in X \}.$$

Понятие функции состоит из трех неотъемлемых частей :

- 1) области определения Х;
- 2) множества Y, содержащего значения функции;
- 3) правила \mathbf{f} , которое для каждого элемента $\mathbf{x} \in \mathbf{X}$ задает единственный элемент $\mathbf{y} = \mathbf{f}(\mathbf{x}) \in \mathbf{Y}$.

Повтор лекции 1

<u>Числовая последовательность</u>

Определение Если каниданц набур числу h поставлено B соотв. некогорое действих число x_n , ro говорох, ro зеден моследоваченьность $x_1, x_2, \ldots, x_n, \ldots$, когорую боднах. $\{x_n\}$

Отдельные числя $x_n \in \{x_n\}$ ray, членами (элементеми) можед- $\{x_n\}$ Часто последовательность задается формулой для вычисления ее элементов по их номерам: $\{1,1/2,1/3,...,1/n\}$ - функция натурального аргумента: $x_n = f(n)$

Определение: число a наз. пределом последовательности $\{x_n\}$, если $\forall \varepsilon > 0$ $\exists N = N(\varepsilon) : (\forall n > N \Rightarrow |x_n - a| < \varepsilon)$

Обозначение: lim $x_n = a$, $x_n \rightarrow a$ ири $n \rightarrow \infty$

Определение: г. верение городинать предел а называется сходящейся (к числу а), а не имеющая предел - расходящейся.

Примеры (1): , т.е. a = 0. Поскольку выражение $\lim_{n \to \infty} \frac{1}{n} = 0$, т.е. a = 0. Поскольку выражение $|1/n + 0| = 1/n < \epsilon$ выполнено $\to \forall n > 1/\epsilon = N(\epsilon)$ $N(\epsilon)$ – не обязательно целое, n – номер, обязательно целое.

(2): $\{Xn\}$ - стационарная последовательность, Xn = a.

⇒ $\lim_{n \to \infty} x_n = \alpha$; T.K. $\forall n \Rightarrow |x_n - a| = |a - a| = 0 < \epsilon$

Геометрическая интерпретация

(lim $x_n = a$) = b thood ε -oxpecit. T. a remainded ble thether noting-the e^{-x_n} , theretail e^{-x_n} the robon e^{-x_n} , theretail e^{-x_n} the robon e^{-x_n}

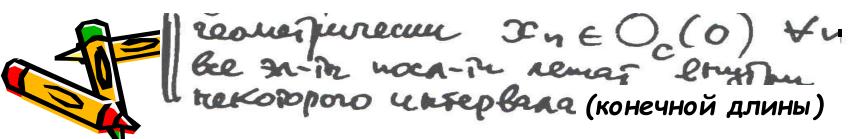
Теореша. Последовачельност может имет минь один предел.

DOK-BO OT uposubroso: DCn -a u och -b, a +b =>

 $\exists . \varepsilon > 0 : O_{\varepsilon}(\alpha) \cap O_{\varepsilon}(\beta) = \emptyset$

 $(x_n \rightarrow a) = > 6$ the $O_{\epsilon}(a)$ remuit rule kokertice rule on-rub hockey. $\{x_n\}$ row uporulo peruit rong, 2 io $x_n \rightarrow b$.

Определение. Последовательность $\{x_n\}$ наз. ограниченной, если $\exists \, \mathbf{c} \, : \, |\, x_n \, | \, < \mathbf{c} \qquad \forall \, n = 1, 2,$



'léopeua. Cxoglugalel noclegobaters Hogb or pature tec.

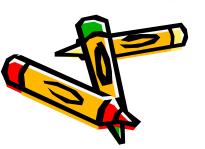
Dok-bo. Tryeb lim $x_n = \alpha$. Bozonëm $\varepsilon > 0$, bce exements

πολοπωμ (x_n) , κατιικε (x_n) (x_n) , νεμες (x_n) (x_n) , κατιικε (x_n) (x_n) , νεμες (x_n) (x_n) , $(x_n$

ruga | scu | < C + u = 1,2,....

Замечание. Обратное неверно, например,

Teoretywiecku: Koherhoe rueso 21-106 hard-in OC1, OC2, ..., OCN, oreligho, momento manerials & hemotopyto <math>S-acpecinous $T.a: oc1,..., ocn <math>\in O_S(a)$. $\Gamma = \max\{E,S\} = \sum och \in O_B(a) = O_E(a) VO_S(a) + M$



Повтор лекции

A Dugme Terreckue overaum nag nochegokerenstragin

Определение. Последоваченьности {хитуиз, {хи-уиз,

 $\{x_ny_n\}$, $\{\frac{x_n}{y_n}\}$ μας., coorbeterbleπ, cynnoù, paynoribto, произведением и гастини последовачельностей $\{x_n\}$, $\{y_n\}$.

B nocheghen chyral upequoraraetel, 40 $y_n \neq 0$, n=1,2,...

Ленна, [a+в] = |a|+1в

Cregilie 12-6/4/10/1. Dok. 6 -- 6.

Téopera Ecru lim on = a, lim yn = b, To

1) $\lim_{n \to \infty} (x_n \pm y_n) = a \pm b$, 2) $\lim_{n \to \infty} (x_n + y_n) = ab$, 3) $\lim_{n \to \infty} (x_n + y_n) = \frac{a}{b}$, $b \neq 0$

1

Доказательство.

Pyero E>0, rozga upu n>N |xn-a| LE, 14n-b| LE 1) |(xn+yn)-(a+b) = |(xn-a)+(yn-b)| = |xn-a|+|yn-b| < 28 upu n>1 2) |xnyn-ab| = |(xnyn-ayn)+(ayn-ab)| = |yn||xn-a|+|a||yn-b| 3) ling= = = > Harutare e tex. M bee Thereekin noch. Eyn & cosepythe $b = \frac{1bl}{2}$ -oxpectitocity 7.b =>8 8 0 8 8) [B] < |yn| n/m n > M upu n>max {N, M} => lim \frac{1}{y_n} = \frac{1}{6} no 2) lim $\frac{x_n}{y_n} = \lim_{n \to \infty} (x_n \cdot \frac{1}{y_n}) = a \cdot \frac{1}{a} = \frac{a}{a}$

12

MOHOTOHKERE HOCKEGOBATEKEREZE. Определение. Госледовательного в хиз на. неубывающей, если ory = ory (спого) возрастающей, если xu - xu+1, ₩n =1,2,... Kebozpaciatower, echu $x_n \ge x_{4+1}$, (choro) y Enlatousen, come xu > xu+1

OSobujetho Talue nockeg-h kay. Motosothum.

Теорена. Моногонная ограниченняя нослед-во сходига.

. Tipu stare eone nocregobeterations ibaleich:

regsochetoceser, 10 lin oca = sup { oca };

lim xu = inf {xu}. Kelozpacistouser, 70

Trochegoberenses
$$x_n = \left(1 + \frac{1}{n}\right)^n$$

возрастающая и ограниченкая свержу

$$E\ddot{e}$$
 иредел $\left(\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e -$ - Число Эйлера

Teopena (0 gamason nochego-batershock)

Eche Hemetile nochego-batershocken
$$\{x_n\}, \{y_n\}, \{z_n\}, \{z_n\}, \{z_n\}, \{z_n\}, \{y_n\}, \{y_n\}, \{z_n\}, \{y_n\}, \{y$$

leopeura (o heperioge K hjugery & repeleticibe) Ecru hocnegobssensmen [xu], fyng cxogetre u xu = yn ym n>1 To him Xn & him yn. DOK-bo Rych lim xn = 2, lim yn = 6 Muguoronaum, 40 BKa, rosga F E >0: OE(a) NOE(b) = 9 → ∃N=N(ε): Yn ∈ O_ε(β), xn ∈ O_ε(α) npu h>N => (yn Lxn) " n> max{N, no} Banceature. In Lyn *> linx, < ling, , to lim = 0. Haupenep, O 4 h

Повтор лекции 1

5 Typulley. Newhar. Twocheg.
$$\{y_n\}$$
, $y_n = (1+\frac{1}{n})^{n+1}$ caoquis.

 $\frac{Dok}{y_{n-1}} = \frac{(1+\frac{1}{n-1})^n}{(1+\frac{1}{n})^{n+1}} = \frac{(\frac{n}{n-1})^n}{(\frac{n+1}{n})^{n+1}} = (\frac{n}{n-1} : \frac{n+1}{n})^n \cdot \frac{n}{n+1}$
 $= (\frac{n^2}{n^2-1})^n \cdot \frac{n}{n+1} = (\frac{n^2-1}{n^2-1})^n \cdot \frac{n}{n+1} = (1+\frac{1}{n^2-1})^n \cdot \frac{n}{n+1}$
 $\Rightarrow (1+\frac{n}{n^2-1})^n \cdot \frac{n}{n+1} > (1+\frac{n}{n^2})^n \cdot \frac{n}{n+1} = 1$

Twockoloky $y_n > 0 \quad \forall n = 1, 2, ..., y_{n-1} > y_n$

The workeg-to $\{y_n\}$ $\frac{y_0}{y_0}$ $\frac{y_$

F.e. mocreg-76 {yn} orpeturreteters =>] lim yn

См1 слайд 14

Предел

последовательности

Число а наз. <u>пределом последовательности</u> X 1, X 2, X 3, ..., X n, ... $\lim x_n = a$

если для любого $\varepsilon > 0^n \stackrel{\longrightarrow}{\text{сущ}}$ ествует число $N = N(\varepsilon)$ такое, что $|x_n - a| < \varepsilon$ при n > N.

<u>Пример</u>: показать, что

$$\lim \frac{2n+1}{n+1} = 2$$

Составим разность
$$\left|\lim_{n\to\infty}\frac{2n+1}{n+1}-2\right|=\frac{1}{n+1}<\varepsilon\,,$$
 если $n>1/\epsilon-1=N(\epsilon)$ $\left|\lim_{n\to\infty}\frac{2n+1}{n+1}-2\right|=\frac{1}{n+1}$

Таким образом, для каждого положительного числа Е найдется число $N = 1/\epsilon - 1$ такое, что при n > N будет иметь место неравенство $n > 1/\epsilon - 1$. Следовательно, число $\alpha = 2$ является пределом

$$x_n = \frac{2n+1}{n+1}$$

Пример Доказать, что последовательность $x_n=\frac{2n-1}{3n+1}$ сходится к числу $a=\frac{2}{3}$, определив для каждого $\varepsilon>0$ число $N=N(\varepsilon)$ такое, что $|x_n-a|<\varepsilon$ при всех $n>N(\varepsilon)$. Заполнить таблицу:

ε	0,1	0,01	0,001
N(arepsilon)			

Решение. Из цепочки соотношений

$$|x_n - a| = \left| \frac{2n-1}{3n+1} - \frac{2}{3} \right| = \frac{5}{3(3n+1)} < \varepsilon$$

следует, что для любого $\varepsilon>0$ неравенство $|x_n-a|<\varepsilon$ выполняется при всех $n>\frac{1}{3}\left(\frac{5}{3\varepsilon}-1\right)=N(\varepsilon)$. Вычислив $N(\varepsilon)$ при значениях, равных 0,1, 0,01 и 0,001, заполняем таблицу:

ε	0,1	0,01	0,001
$N(\varepsilon)$	5	55	555

Свойства сходящейся последовательности

Теорема Последовательность $\{x_n\}$ имеет предел a тогда и только тогда, когда $x_n = a + \alpha_n$, где $\{\alpha_n\}$ — бесконечно малая последовательность.

Показать, что последовательность $x_n = q^n$, где |q| < 1, является бесконечно малой.

Решение. При q=0 это очевидно. Пусть 0<|q|<1. Воспользовавшись неравенством Бернулли (1), получим цепочку соотношений

$$\frac{1}{|q|^n} = \left[1 + \left(\frac{1}{|q|} - 1\right)\right]^n \ge 1 + n\left(\frac{1}{|q|} - 1\right) > n\left(\frac{1}{|q|} - 1\right),$$

из которой следует, что

$$|q^n - 0| = \overline{\left|q\right|^n < \frac{1}{n\left(\frac{1}{|q|} - 1\right)} < \varepsilon}$$

Это означает , что
$$n > \frac{1}{\varepsilon(\frac{1}{|q|}-1)} = N(\varepsilon)$$

$$\lim_{n\to\infty}q^n=0$$

Пример: найти предел последовательности

$$x_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}}.$$

Решение. Поскольку в сумме, определяющей x_n , каждое последующее слагаемое меньше предыдущего, $\frac{n}{\sqrt{n^2+n}} < x_n < \frac{n}{\sqrt{n^2+1}}$. Таким образом, последовательность $\{x_n\}$ зажата последовательностями $y_n = \frac{n}{\sqrt{n^2+n}}$ и $z_n = \frac{n}{\sqrt{n^2+1}}$, пределы которых равны единице. Действительно

$$\lim_{n \to \infty} y_n = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n}}} = 1;$$

$$\lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n}}} = 1$$

$$\lim_{n \to \infty} z_n = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n^2}}} = 1.$$

Тогда
$$\lim_{n\to\infty} x_n = 1.$$

Предел функции

Определение . Пусть $a \in \mathbf{R}$. Окрестностью O(a) точки a называется любой интервал (b,c), содержащий точку a.

Проколотой окрестностью $\dot{O}(a)$ точки a называется любая ее окрестность, из которой исключается сама точка a.

Определение: Тусть $\varepsilon > 0$, ε -окрестностью $O_{\varepsilon}(a)$ точки a называется интервал $(a - \varepsilon, a + \varepsilon)$. Проколотой ε -окрестностью $\dot{O}_{\varepsilon}(a)$ точки a называется ее ε -окрестность, из которой исключена сама точка a. Окрестность ε и проколотую окрестность ε точки a можно задать в виде

$$O_{\varepsilon}(a) = \{x \in \mathbf{R} : |x - a| < \varepsilon\} = (a - \varepsilon, a + \varepsilon),$$

$$\dot{O}_{\varepsilon}(a) = \{x \in \mathbf{R} : 0 < |x-a| < \varepsilon\} = (a-\varepsilon,a) \cup (a,a+\varepsilon).$$

Определение (Коши). Число A называется пределом функции f(x)в точке a (или при $x \to a$), если функция f(x) определена в некоторой проколотой окрестности точки a и

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon): \ 0 < |x - a| < \delta \ \Rightarrow |f(x) - A| < \varepsilon.$$

Здесь принятые обозначения $\lim_{x \to a} f(x) = A$ или $f(x) \to A$ при $x \to a$.

Заметим, что в самой точке a функция f(x) может быть не определена.

Замечание: в т. а функция f(x) может быть не определена. Например $f(x) = x \cdot \sin 1/x$ определена всюду, кроме 0,

но
$$\lim_{x\to 0} x \cdot \sin \frac{1}{x} = 0$$
 \to Пусть $\varepsilon > 0$, тогда $|x \cdot \sin 1/x - 0| = |x| \cdot |\sin 1/x| \le |x| < \varepsilon$ при условии $0 < |x - 0| = |x| < \delta(\varepsilon) = \varepsilon$

Предел функции

Определение : функция $f(x) \to A$ при $x \to a$ (A, a - числа), если для любого $\epsilon > 0$ существует $\delta = \delta(\epsilon) > 0$ такое, что . $|f(x) - A| < \epsilon$ при $0 < |x - a| < \delta$

Аналогично,
$$\lim_{x\to\infty} f(x) = A$$
 если $|f(x) - A| < \varepsilon$ при $|x| > N(\varepsilon)$

- 1. $\lim_{x \to a} [f_1(x) + f_2(x)] = \lim_{x \to a} f_1(x) + \lim_{x \to a} f_2(x);$
- 2. $\lim_{x \to a} [f_1(x) \times f_2(x)] = \lim_{x \to a} f_1(x) \times \lim_{x \to a} f_2(x);$
- 3. $\lim_{x \to a} [f_1(x)/f_2(x)] = \lim_{x \to a} f_1(x)/\lim_{x \to a} f_2(x);$

Определение Число A называется пределом функции f(x) при $x \to \infty$, если для любого $\varepsilon > 0$ найдется число $\delta = \delta(\varepsilon) > 0$ такое, что для всех x, удовлетворяющих неравенству $|x| > \delta$, выполняется условие $|f(x) - A| < \varepsilon$,

$$\left(\lim_{x\to\infty}f(x)=A\right)\Longleftrightarrow$$

$$\iff \Big(orall arepsilon > 0 \; \exists \delta = \delta(arepsilon) > 0: \; \; |x| > \delta \Rightarrow |f(x) - A| < arepsilon \Big).$$

Аналогично определяются пределы функции f(x) при $x \to +\infty$ и $x \to -\infty$:

$$\left(\lim_{x\to +\infty} f(x) = A\right) \Longleftrightarrow$$

$$\iff \left(\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0 : \; x > \delta \Rightarrow |f(x) - A| < \varepsilon\right),$$

$$\left(\lim_{x\to -\infty} f(x) = A\right) \Longleftrightarrow$$

$$\iff \left(\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0 : \; x < -\delta \Rightarrow |f(x) - A| < \varepsilon\right).$$

Ogtocoportue upegente

Определение Инсло А_ наз. пределам слева оружкими f(x) в поисе а, если

 $4\varepsilon > 0 = 3\delta > 0 : \alpha - \delta \angle x \angle \alpha = > |f(x) - A - | \angle \varepsilon$ $A = \lim_{x \to \alpha - 0} f(x) = f(\alpha - 0)$

ULLO A+ tray. hpegenale cupaba quytikusus fix) b 7.a, ea

32 |+A-(x)] <= 8+02x2p:0<8E0<34

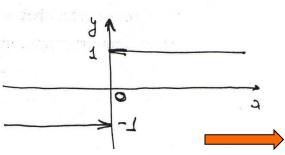
 $\Delta_{+} \stackrel{\text{def}}{=} \lim_{\infty \to a \neq 0} f(\infty) = f(a + 0)$

Имста А-, А+ нау. Однострокними пределями.

Trump fa=sign $x = \frac{x}{|x|} = \begin{cases} -1, & x < 0 \\ 1, & x > 0 \end{cases}$

 $\lim_{x\to -0} f(x) = f(-0) = -1$

 $\lim_{x \to +\infty} f(x) = f(+0) = 1$



Здесь принято обозначение $A_+ = \lim_{x \to a+0} f(x) = f(a+0)$.

Числа A_-, A_+ называются односторонними пределами функции f(x) в точке a.

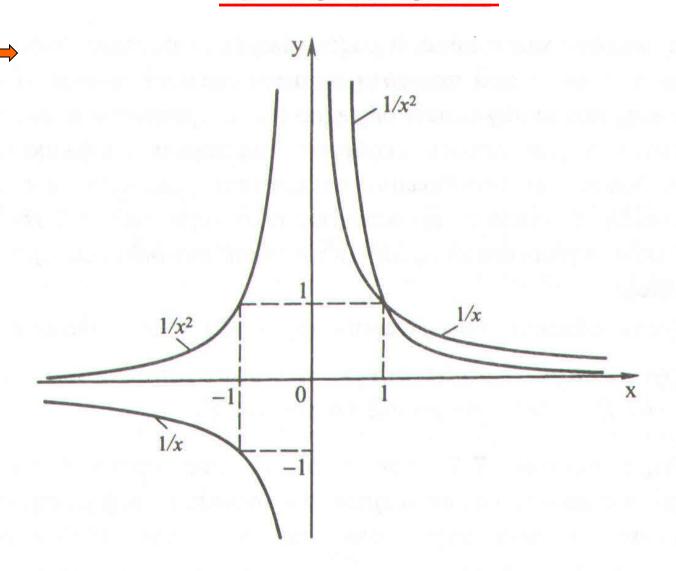
Пример 18. Определим функцию sign (читается сигнум):

$$f(x) = sign(x) = \begin{cases} -1, & x < 0; \\ 0, & x = 0; \\ 1, & x > 0. \end{cases}$$

Тогда
$$\lim_{x \to -0} f(x) = f(-0) = -1$$
, а $\lim_{x \to +0} f(x) = f(+0) = 1$.

1 leopeua. Unero A Abrilier upegeron gyrnesum fla b rune a ronge u ronoko rorge, korga A=A-=A+. Dok-bo. Tych $\lim_{x\to a} f(x) = A$ \Longleftrightarrow {42>0 38>0: 04/2c-2/28 => |f(x)-A| LE}, $\left\{a-8 + \infty \leq a\right\} = > \left|f(\infty)-A\right| \leq \varepsilon = > A = A.$ {240c42+8 => |f(x)-A| 483 => A=A+ Tuyab A = A , Tage 4 8 >0 $38.00:a-6.4x2a=>|f(x)-A|<\epsilon$ 3> /A- (x) } <= +8+ => |f(x) -A| < E Moronaum $S = min(S_-, S_+)$, roge $\{0 \le |x-a| \le 8 => |f(x)-A| \le \} => \lim_{x \to a} f(x) = A.$

Односторонние пределы



Основные теоремы о пределах функций

Теорена. Функция f(x) может имей в пике а только один предел.

3 S1: 0 < 1 x - 2 | 2 S1 => | f(x) - A1 | < E

 $\exists S_2 : O \leq |x - \alpha| \leq S_2 = > |f(oc) - A_2| \leq \varepsilon$

Nononaum $S = \min(S_1, S_2)$, rega O

 $|A_1 - A_2| = |A_1 - f(x) + f(x) - A_2| \le |A_1 - f(x)| + |f(x) - A_2| \le 2\varepsilon$

(hpu 04/00-01/28)

B cury whoughoverroch & A1-A2 =0

Dok-bo. Pukcupyen $\varepsilon > 0$, rega $\exists \delta > 0$: $|f(x)-A| \leq \varepsilon \quad \forall x \in U_{\delta}(a) \qquad \Longleftrightarrow$

A-E < f(x) < A + E + x ∈ Us(a)

и всюду в некоторой ирокологой окрестной T. a винолняет нер-во $f(x) \in g(x)$, $TO A \leq B$.

Dok-bo Moroncum h(x) = g(x) - f(x).

More thekosopour g > 0: $\forall x \in \mathring{O}_g(q) = g(x) - f(x)$.

Doughten, g > 0: $\forall x \in \mathring{O}_g(q) = g(x) - f(x)$.

Doughten, g > 0: $\forall x \in \mathring{O}_g(q) = g(x) - f(x)$.

To seopene o coxpatientum g - g(x) = g(x) - f(x).

If g > 0: $\forall x \in \mathring{O}_g(q)$ g = g(x) - g(x).

Ecru $S = \min(g, \sigma)$, to $\forall x \in O_g(a)$ ogrobbenetto $h(x) \geqslant 0$ u h < 0. Aposeboperue.

Boolonge, f(x) < g(x) => $A \in B$.

Teopena (0 пределе прамениуютной другкции)

Тусть в некогорой прокологой бокрестность г. а V(a)выполнены неравенива g(x) = f(x) = h(x),

Tuga ecru $\lim_{x\to a} g(x) = \lim_{x\to a} h(x)$,

Cyuşecibyei $\lim_{x\to a} f(x) = A$.

<u>Dok-bo.</u> ∀ € >0

3+A>(x) } 23-A <= 182 10-20120: 18E

3 δ2:04|x-a|2δ2 => A-ε < h(x) LA+ε

Moronaum $S = \min\{\delta_1, \delta_2, \tau\}$, rage

021x-a128 =>

 $A-\varepsilon < g(x) \leq f(x) \leq h(x) < A+\varepsilon = >$

Teopena (0 upegene choneroù quellem)
Tujero cyusecsbyror lim f(x) = b, lim g(y) = cu upu stom $f(\infty) \neq \beta$ $\forall \infty \in U_{\beta}(a)$, Torga ($\lim_{x \to a} g(f(x)) = C$ 20к-во Возенем $\varepsilon > 0$. $\{\lim_{y\to 0}g(y)=c\} => \exists \sigma=\sigma(\varepsilon):$ 19(4)-c1 LE upu 0214-8120 horonaum y = f(x), rorga 19(f(x))-c/LE upu 0/1f(x)-6/20. $\{\lim_{x\to a} f(x) = \beta\} = \exists \mathcal{M} = \mathcal{M}(\sigma):$ 1f(x)-6/20 upu 02/00-a/2/4 $\{f(x) \neq \emptyset \quad \forall x \in U_{\mathcal{S}}(a)\} =>$ $0 \leq |f(x) - b| \leq \sigma$ upu $0 \leq |x - a| \leq S = \min(\mu, \beta)$ Паким образом, 1 g(f(x))-c/LE upu 0 4 |x-a/LS V: 0(f(x)) - C

Практические методы нахождения пределов

При отыскании предела отношения двух целых многочленов P(x), Q(x)при $x \to \infty$ полезно оба члена отношения предварительно разделить на χ^n . Аналогично и для дробей, содержащих иррациональности

Пример:
$$\lim_{x \to \infty} \frac{x}{\sqrt[3]{x^3 + 10}} = \lim_{x \to \infty} \frac{x}{x \sqrt[3]{1 + \frac{10}{x^3}}} = 1$$

- 2. Если P(a) = 0 и Q(a) = 0, то дробь P(x) / Q(x) рекомендуется сократить на бином (х - а).
- 3. Иррациональные выражения приводятся к рациональному виду путем введения новой переменной. Например:

loлагая
$$1+x=y^6$$
, получим $\lim_{x\to 0} \frac{\sqrt{1+x-1}}{\sqrt[3]{1+x}-1} = ?$

Решение. Полагая $1 + x = y^6$, получим

$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{\sqrt[3]{1+x} - 1} = \lim_{y \to 1} \frac{y^3 - 1}{y^2 - 1} = \lim_{y \to 1} \frac{y^2 + y + 1}{y + 1} = \frac{3}{2}$$

4. Полезно знать, что если существует и положителен $\lim_{x\to a} f(x)$

$$\lim_{x \to a} \left[\ln f(x) \right]^{=} \quad \ln \left[\lim_{x \to a} f(x) \right]^{\cdot}$$

$$\lim_{x \to 0} \frac{\ln (1+x)}{x} = 1 \quad \lim_{x \to \infty} \left(1 + \frac{k}{x} \right)^{x} = e^{k} \quad \lim_{x \to 0} \frac{\sin x}{x^{4}} = 1$$

Бесконечно малые функции

Определение Функция $\alpha(x)$ называется бесконечно малой при $x \to *$, если $\lim_{x \to *} \alpha(x) = 0$, т. е. $\forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0 : \; \forall x \in \delta \in \dot{O}_{\delta}(*) \Rightarrow |\alpha(x)| < \varepsilon$.

Определение Функция $\beta(x)$ называется бесконечно большой при $x \to *$, если

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x \in \dot{O}_{\delta}(*) \Rightarrow |\beta(x)| > \varepsilon.$$

О бесконечно большой при $x \to *$ функции $\beta(x)$ говорят, что она имеет при $x \to *$ бесконечный предел, и пишут $\lim_{x \to *} \beta(x) = \infty$.

Пример Предел $\lim_{x\to 0}\frac{1}{x}=\infty$, поскольку $\forall \varepsilon>0 \ \left|\frac{1}{x}\right|>\varepsilon$ при $0<|x|<\frac{1}{\varepsilon}=\delta(\varepsilon).$ Если $\forall \varepsilon>0 \ \exists \delta=\delta(\varepsilon)>0: \ x\in \dot{O}_{\delta}(*)\Rightarrow f(x)>\varepsilon$, то пишут $\lim_{x\to *}f(x)=+\infty.$ Если $\forall \varepsilon>0 \ \exists \delta=\delta(\varepsilon)>0: \ x\in \dot{O}_{\delta}(*)\Rightarrow f(x)<-\varepsilon$, то $\lim_{x\to *}f(x)=-\infty.$

Свойства бесконечно малых функций

Teopena. Cynna gbysc δ . M. hpu $x \to a$ gyrkyw ech gryrkyw δ . Maral hpu $x \to a$. Dok-bo. Type d(x), $\beta(x) - \delta$. M. upu $x \rightarrow a$ $\forall \epsilon > 0 = 181 : 0 < |x - \alpha| < \delta_1 = > |\alpha(x)| < \epsilon/2$ 382:041x-a/482 => 13(x)/4E/2 Moronaux $S = \min\{\delta_1, \delta_2\}$, raga $0 < |x-a| < \delta = >$ Заметание. Теорема верна дия любого констного числа в. малых дункимий, Teopena. Tipouslegetine d'haroù upin $x \to a$ grytikizun $\alpha(x)$ tha orpatiuretityto b hekoropoù upiokoropoù Gokpethoch $U_{\sigma}(a)$ T. a grytikizut f(x) ech δ . Maral upin $x \to a$ grytikizut.

 $\frac{Dok-bo}{E}$. Tyer $|f(x)| \angle C$ $\forall x \in U_{F}(a)$ $\forall \epsilon > 0 \exists \delta: 0 \angle |x-a| \angle \delta => |\angle(x)| \angle \frac{\epsilon}{C}$

Trononcum $g = \min(\delta, \sigma)$, raga o < |x-a| < g =>

 $|f(x)\cdot d(x)| \neq |f(x)|\cdot |d(x)| \leq C \cdot \frac{\mathcal{E}}{C} = \mathcal{E}$

Cregibue 1. Ear d(x), $\beta(x) - \delta$. M. Upu $x \to a$, π d(x), $\beta(x) - \delta$. M. Upu $x \to a$.

Док. В(х) -локально огранитека.

Cregilare 2. Equi $d(x) - \delta \cdot M$. upu $x \to a$, C = const, 70 $c \cdot d(x) - \delta \cdot M$. upu $x \to a$.

Два замечательных предела

Пусть x - центральный угол окружности единичного радиуса, причем 0 < x < π/2 (см. следующий слайд).

Первый замечательный предел:

пусть x - центральный угол единичного круга, 0 < x < x



Bropou zamerarensmen upeger.
$$(1+\frac{1}{x})^{x}$$
 by u of clery Teopena. $\lim_{x\to\infty} (1+\frac{1}{x})^{x} = e$ $= 7 \pm \ln(1+\frac{1}{x})^{x} = e$

Teopena.
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$$

$$\underline{Dok-bo}$$
. $\forall x > 0$ $\exists h = h(x) : h \neq x \leq h+1$

$$\exists n = n(x)$$

$$\frac{1}{h} \geq \frac{1}{x} > \frac{1}{h+1}$$

$$\frac{1}{h} \ge \frac{1}{x} > \frac{1}{h+1} = > 1 + \frac{1}{h+1} < 1 + \frac{1}{x} \le 1 + \frac{1}{h} = >$$

$$\left(1+\frac{1}{n+1}\right)^{n} < \left(1+\frac{1}{\infty}\right)^{\infty} \leftarrow \left(1+\frac{1}{n}\right)^{n+1}$$

Tieperogra k ujegery upu n -> 00, x -> +00

$$\lim_{n\to\infty} \left(1 + \frac{1}{n+1} \right)^n = \lim_{n\to\infty} \left(1 + \frac{1}{n+1} \right)^{n+1} \left(1 + \frac{1}{n+1} \right)^{-1} = e$$

$$\lim_{n\to\infty} \left(1 + \frac{1}{n+1} \right)^n = \lim_{n\to\infty} \left(1 + \frac{1}{n+1} \right)^{n+1} = e$$

$$\lim_{n\to\infty} \left(1 + \frac{1}{n+1} \right)^n = \lim_{n\to\infty} \left(1 + \frac{1}{n+1} \right)^{n+1} = e$$

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^{n+1} = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n \left(1+\frac{1}{n}\right) = C$$

Cregatives. Each lime
$$\beta(x) = \infty$$
, $\beta(x)$

lime $\left\{1 + \frac{1}{\beta(x)}\right\}^{\beta(x)} = \mathbb{C}$.

Dok. Moronaum $\beta(x) = y \rightarrow \infty$, $x \rightarrow \mathbb{C}$

lime $\left\{1 + \frac{1}{\beta(x)}\right\}^{\beta(x)} = \lim_{y \rightarrow \infty} \left(1 + \frac{1}{y}\right)^y = \mathbb{C}$.

Cregative 2. Each lime $d(x) = 0$, to

 $\lim_{x \rightarrow \mathbb{C}} \left\{1 + d(x)\right\}^{x} = \mathbb{C}$.

Dok. Thoronaum $\beta(x) = \frac{1}{d(x)} \rightarrow \infty$, $x \rightarrow \mathbb{C}$
 $\lim_{x \rightarrow \mathbb{C}} \left\{1 + d(x)\right\}^{x} = \lim_{x \rightarrow \mathbb{C}} \left\{1 + \frac{1}{y}\right\}^{\beta(x)} = \mathbb{C}$.

Dimerical substitution $\lim_{x \rightarrow \mathbb{C}} \left\{1 + \frac{1}{y}\right\}^{\beta(x)} = \mathbb{C}$.

Bracthoole, $\lim_{x\to 0} (1+xc)^{\frac{1}{x}} = e$

Teopera lim
$$(1+\frac{1}{x})^x = e$$

$$\frac{Dox-bo}{1} + x > 0 \quad \exists n = n(x) : n \le x \le n+1 => 1$$

$$\frac{1}{n} > \frac{1}{x} > \frac{1}{n+1} => 1+\frac{1}{x} \le 1+\frac{1}{x} \le 1+\frac{1}{n} => 1+\frac{1}{n+1} => 1+\frac{1}{x} \le 1+\frac{1}{n} => 1+\frac{1}{n+1} => 1+\frac{1}{x} \le 1+\frac{1}{x} \le 1+\frac{1}{n} => 1+\frac{1}{n+1} => 1+\frac{1}{x} \le 1+\frac{1}{x} \le 1+\frac{1}{n} => 1+\frac{1}{n+1} => 1+\frac{1}{x} \le 1+\frac{1}{n} => 1+\frac{1}{n+1} => 1+\frac{1}{$$

Продолжение

Второй замечательный предел используется при раскрытии неопределенности вида $[1^{\infty}]$.

Пример . Вычислить
$$A = \lim_{x \to \infty} \left(\frac{x}{x+1}\right)^x$$
.
$$A = \lim_{x \to \infty} \left[1 + \left(\frac{x}{x+1} - 1\right)\right]^x = \lim_{x \to \infty} \left[\left(1 + \frac{-1}{x+1}\right)^{\frac{x+1}{-1}}\right]^{\frac{-1}{x+1}x}.$$

Положим
$$y=rac{-1}{x+1},\; x=-rac{1+y}{y},\; y o 0$$
 при $x o \infty$

$$A = \lim_{x \to \infty} \left[(1+y)^{\frac{1}{y}} \right]^{-(1+y)} = e^{-1}.$$

Другой способ раскрытия неопределенности вида $[1^{\infty}]$, т. е. вычисления предела при $x \to a$ выражения u^v , где $u \to 1, v \to \infty$, основан на преобразовании

$$\lim_{x \to a} u^v = \lim_{x \to a} e^{v \ln u} = e^{\lim_{x \to a} v \ln u}.$$

Сделаем замену w=u-1 и вычислим предел $\lim_{x\to a}v\ln u=$

$$=\lim_{x\to a}v\ln(w+1)=\lim_{x\to a}vwrac{\ln(w+1)}{w}=\lim_{x\to a}(vw)=\lim_{x\to a}v(u-1),$$
 поскольку $w\to 0$ при $x\to a$. Таким образом, справедливо следующее утверждение.

Утверждение 1. Если u o 1 при x o a, то $\lim_{x o a} u^v = e^{\lim_{x o a} v(u-1)}$.

Cpabketul opykkulu (npu gannou cipempenu apym. Dri cpabketul gbyx rucer a, b paccuaipubatoi usc othowetul 9/b. Dri cpabketul gbyx opykkului f(x), g(x) npu $x \to a$ paccuaipubatoi $\lim_{x\to a} \frac{f(x)}{g(x)}$.

Oupegenerue Tyer f(x), g(x) supegenerus b rekoropoù U(x) echu lim $\frac{f(x)}{g(x)} = 0$, to f(x) ray. Seck. Manou no epolerum C(g(x)) when $x \to 0$

epablication c g(x) upu $x \rightarrow a$.

Obozharemue:
$$f(x) = O(g(x))$$
, $x \rightarrow a$
um : $f = O(g)$, $x \rightarrow a$

Ballerature: $\lim_{x\to a} \frac{f(x)}{g(x)} = 0 \iff f(x) = d(x) \cdot g(x)$, g(x), g(x)

Определение Пусть f(x) и g(x) определены в U(a).

Если $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$, то функции f(x) и g(x) называются эквивалентными (асимптотически равными) при $x \to a$. Обозначение: $f \sim g$, $x \to a$.

Пример: $\sin x \sim x$, $x \to 0$.

<u>Теорема</u> (критерий эквивалентности функций)

$$f \sim g, x \rightarrow \alpha \iff f = g + o(g), x \rightarrow \alpha$$

$$\underbrace{DoK-bo}. \text{ Tyefb } f \sim g, x \rightarrow \alpha \implies \lim_{x \rightarrow \alpha} \frac{f(x)}{g(x)} = 1 \Rightarrow$$

$$\underbrace{\frac{f(x)}{g(x)}} = 1 + d(x), d(x) - \delta...u. \text{ upu } x \rightarrow \alpha \implies$$

$$f(x) = g(x) + d(x) \cdot g(x) = g(x) + o(g(x)), x \rightarrow \alpha.$$

$$\underbrace{f(x)}_{\text{Tyefb}} = g + o(g), x \rightarrow \alpha \implies$$

$$\underbrace{f(x)}_{\text{Tyefb}} = \lim_{x \rightarrow \alpha} \left\{ 1 + \frac{o(g)}{g} \right\} = 1 \implies f \sim g, x \rightarrow \alpha.$$

список функций, эквивалентных x при $x \to 0$:

$$\sin x \sim \operatorname{tg} x \sim \arcsin x \sim \operatorname{arctg} x \sim$$

$$\sim e^x - 1 \sim \ln(1+x) \sim x \quad (x \to 0).$$