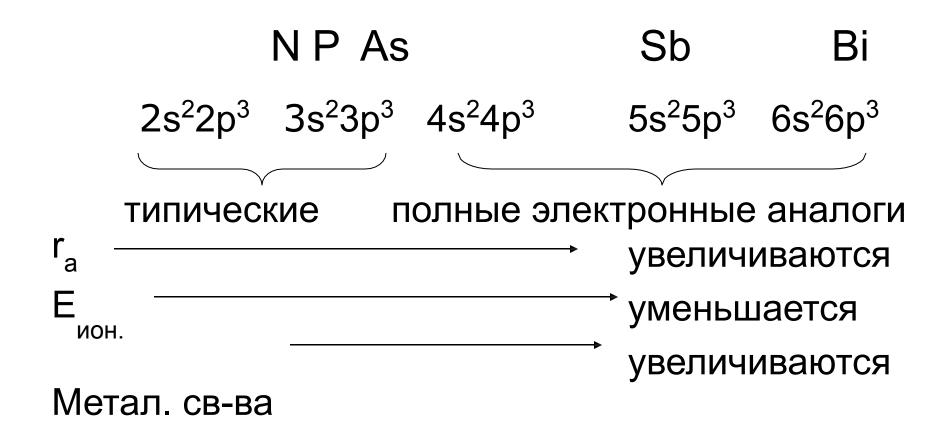
Лекция 23 р-элементы V группы (пниктогены)

N, P, As, Sb, Bi

Сборная 8 классов по химии

Лицей 1502 при МЭИ

Подготовил: Назаров М.А.


Элементы 15 группы

1 2 13 14 <u>15</u> 16 17 18

Н							(H)	Не
Li	Be		В	С	N	О	F	Ne
Na	Mg		Al	Si	P	S	Cl	Ar
K	Ca		Ga	Ge	As	Se	Br	Kr
Rb	Sr	d-block	In	Sn	Sb	Te	I	Xe
Cs	Ba		T1	Pb	Bi	Po	At	Rn
Fr	Ra				,			

N – азот, P – фосфор, As – мышьяк, Sb – сурьма, Bi – висмут

Общая характеристика

Общая характеристика

```
N - неметалл
P — неметалл,
P — п/п
A<sup>черный</sup> AS, Sb<sub>желтый</sub> - немет.
Sb - мет.
Bi - металл
```


Общая характеристика

$$P + HNO_{3}^{(конц.)} \rightarrow H_{3}PO_{4} + NO_{2} + H_{2}O$$
 $As + HNO_{3}^{(конц.)} \rightarrow HAsO_{3} + NO_{2} + H_{2}O$
 $Sb + HNO_{3}^{(конц.)} \rightarrow HSbO_{3} + NO_{2} + H_{2}O$
 $Bi + HNO_{3}^{(разб.)} \rightarrow Bi(NO_{3})_{3} + NO + H_{2}O$

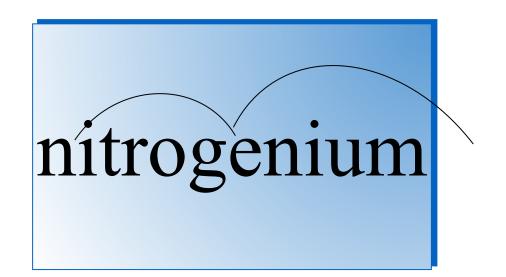
Степени окисления

Характерные Устойчивые

N
$$-3 \div +5$$

Природные соединения

	Ν	Р	As	Sb	Bi
Кларк	0,04	0,09	5.10-4	5·10 ⁻⁵	2.10-5
	NaNO Ca ₃ (P	⁰ 3 ² O ₄) _E K(MO ₄) ₂	As ₂ S ₃ CaF ₂	Sb_2S_3	Bi_2S_3


N₂ 78.09% в атмосфере

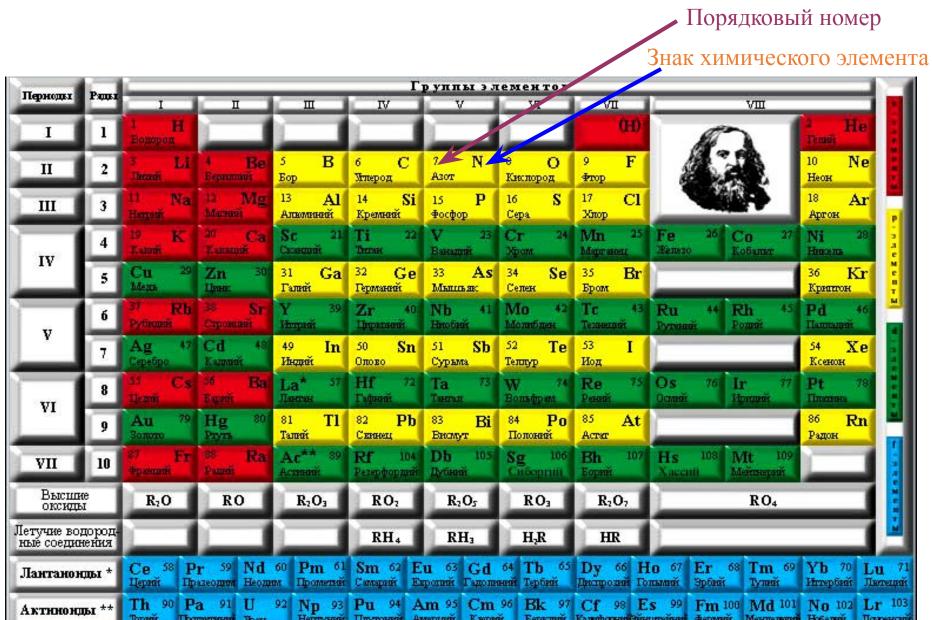
Азот, его свойства и значение

отрицание

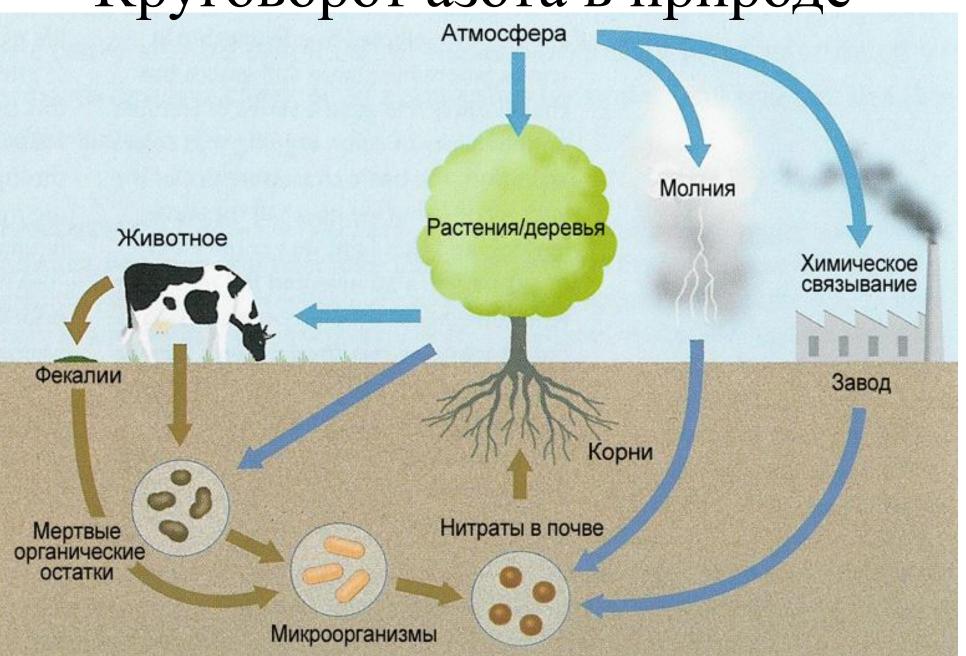
жизнь

селитра

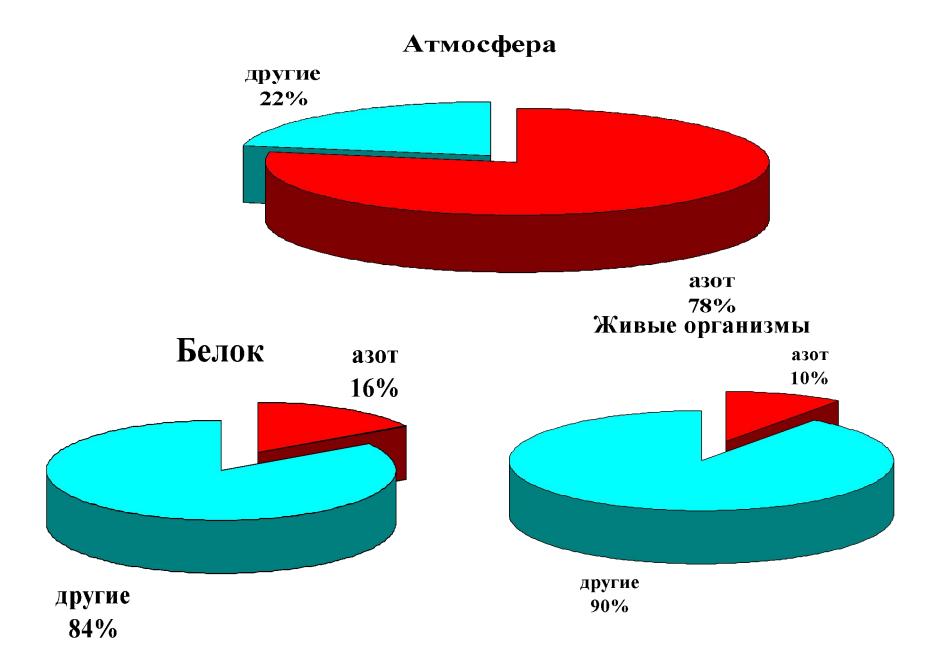
рождающий

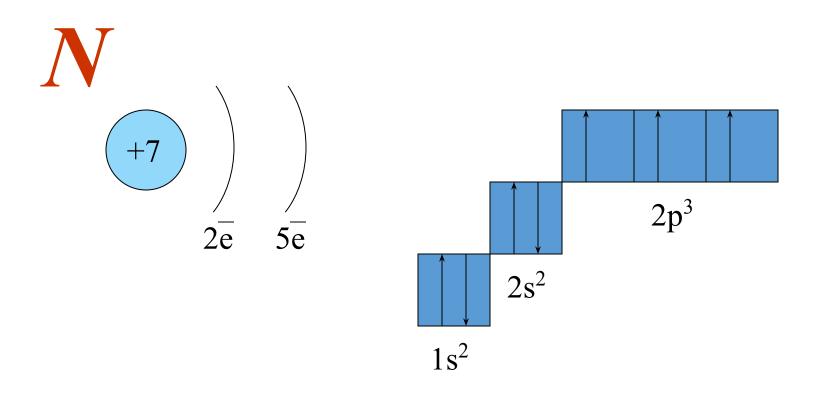

Открытие азота

- 12 сентября 1772 года Даниель Резерфорд
- 1771 1773 гг. Г. Кавендиш и Дж. Пристли
- 1770 -1777 гг. К. Шееле
- 1787 год А. Лавуазье, Л. Гитоном де Морво и А. Фуркруа было предложено название «азот» (от греч., означающего безжизненный)

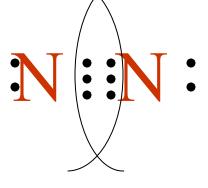


Антуан Лоран Лавуазье


Периодическая таблица химических элементов Д.И. Менделеева


Круговорот азота в природе

Содержание азота в природе


Строение атома азота

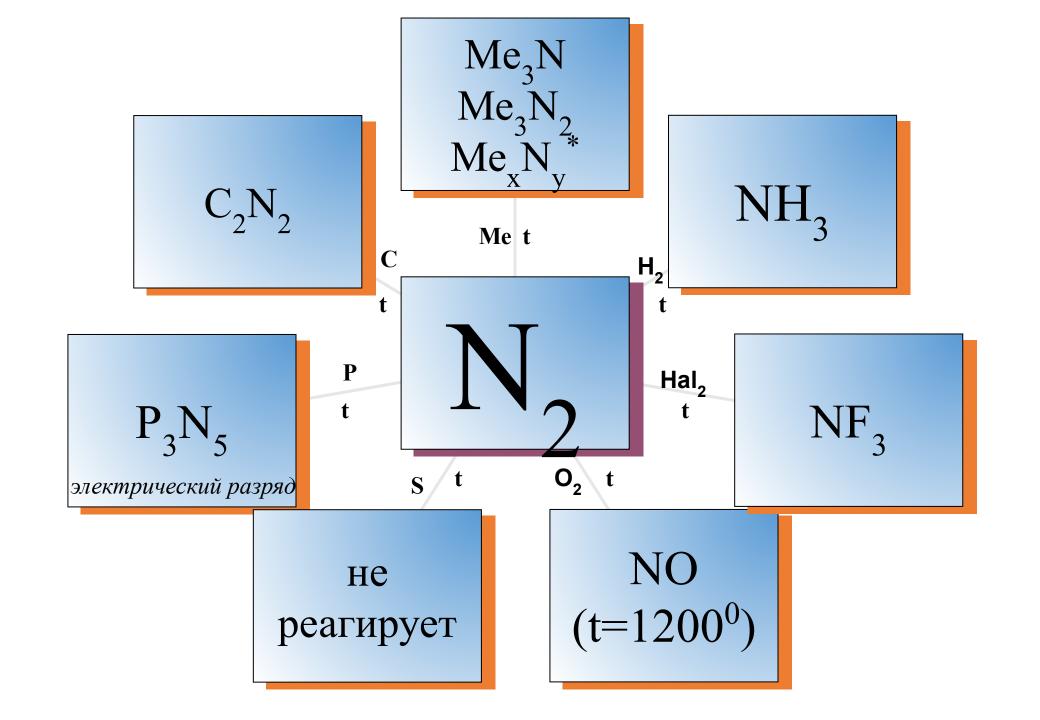
Валентность = III

Азот - простое вещество

2 Молекулярная формула

Электронная формула

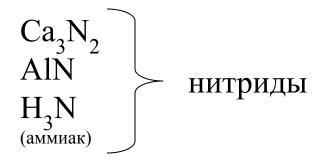
Структурная формула ковалентная неполярная связь


Газ без цвета, запаха и вкуса. Малорастворим в воде.

При t = -196°C жидкость

При t = -210°C белая снегообразная масса

Азот


```
[аzoo] - безжизненный
    N ... 2s^2 2p^3 C_T.
    окисления:
-3-2 -1 -1/3
                                      0 + 1 + 2 + 3 + 4 + 5
                                     N_2 N_2 O NO N_2 O_3 NO_2 N_2 O_5
NH<sub>3</sub> N<sub>2</sub>H<sub>4</sub> NH<sub>2</sub>OH
HN<sub>3</sub> NH<sub>4</sub><sup>+</sup>
                                                         HNO<sub>2</sub>
NH_2^-
NH^{2-}
```


Химические свойства атома азота

Окислительные свойства

$$N^0+3\overline{e} \longrightarrow N^{-3}$$

Восстановительные свойства

$$N^{+5}$$

$$N^{+4}$$

$$N - n\overline{e} \longrightarrow N^{+3}$$

$$N^{+2}$$

$$N^{+1}$$

Реакции молекулярного азота

1. С металлами при нагревании

$$3Mg + N_2 = Mg_3N_2$$
 450°C
 $2Ti + N_2 = 2TiN$ 800°C
 $2AI + N_2 = 2AIN$ 900°C

2. C H₂ на катализаторе

$$N_2 + 3H_2 = 2NH_3$$
 (процесс Боша-Габера)

3. С O_2 в электрическом разряде

$$N_2 + O_2 = 2NO$$

4. С комплексами переходных металлов

$$[Ru(NH_3)_5]Cl_3 + N_2 + Zn/Hg = [Ru(NH_3)_5(N_2)]Cl_2 + ZnCl_2 + Hg + H_2O$$

Химические свойства вещества азота

Окислительные свойства

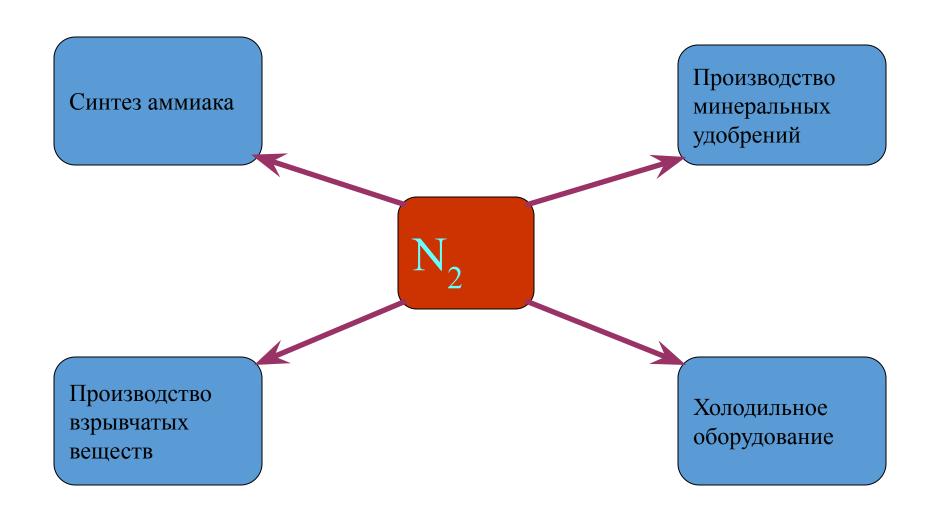
• Взаимодействие с металлами (t^o , с литием при комнатной t^o):

$$3Mg^0 + N_2^0 = Mg_3^{+2}N_2^{-3}$$
 нитрид магния

• Взаимодействие с водородом:

$$N_2^0 + 3H_2^0 \stackrel{\text{Kat.}}{\longleftrightarrow} 2NH_3^{-3 + 1} + Q$$

Классификация реакции:


- •соединения
- •обратимая
- •каталитическая
- •OBP
- •экзотермическая
- •гомогенная

Восстановительные свойства

• Взаимодействие с кислородом

$$N_{2}^{0} + O_{2}^{0} \xrightarrow{3000 - 4000^{\circ}C} 2NO - Q$$

Применение азота

Удобрения, содержащие азот

Азотные

Аммиачные

- •Жидкий аммиак
- •Аммиачная вода

Аммонийные

- •Хлорид аммония
- •Сульфат аммония

Амидные

•мочевина

Получение азота

- Сжижение воздуха 🔲
- Взаимодействие нитрита натрия с хлоридом аммония 🔲

Сжижение воздуха

Т кипения = -196°C

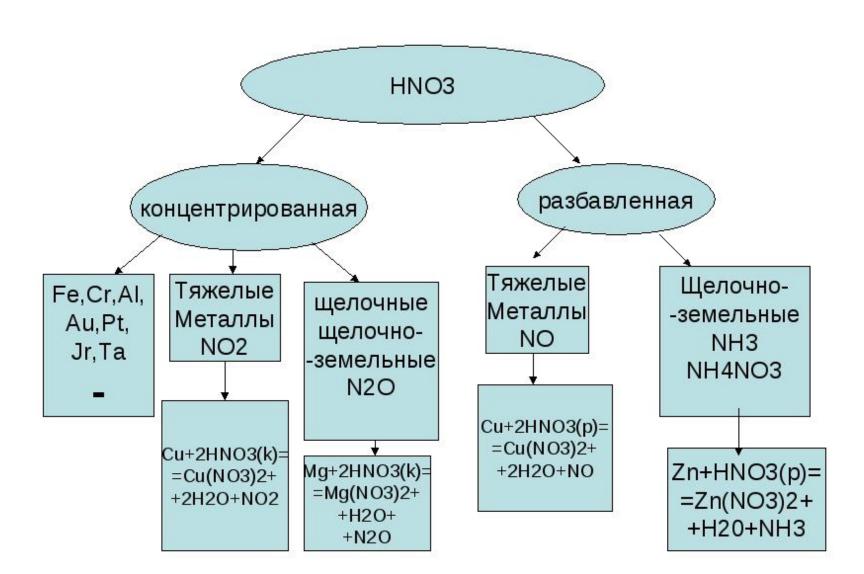
Т кипения = -183°C

Реакция получения N₂

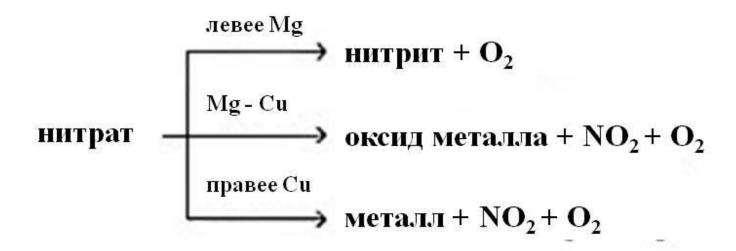
$${
m NaNO}_2 + {
m NH}_3 {
m Cl} = {
m NaCl} + {
m N}_2 \square \ + 2 {
m H}_2 {
m O}$$
 нитрит хлорид аммония

Оксиды азота

	Оксид азота (I) N₂O	Оксид азота (II) NO	Оксид азота (III) N ₂ O ₃	Оксид азота (IV) NO₂	Оксид азота (V) N₂O₅	
Физические свойства	Бесцветный газ «Веселящий газ» используется как наркоз	Бесцветный газ. Яд. Действует на ЦНС, связывает гемоглобин крови.	Синяя жидкость	Бурый газ Ядовит! Раздражает дыхательные пути, вызывает отек легких.	Прозрачные бесцветные кристаллы	
Химические свойства	Несолеобразующий оксид		Кислотные оксиды			
	$2N_2O = 2N_2 + O_2$	Не взаимодействует с водой, кислотами щелочами 2NO +O ₂ = 2NO ₂	N ₂ O ₃ + H ₂ O= 2HNO ₂	$NO_2 + H_2O = HNO_3 + HNO_2$ $2NO_2 + 2NaOH = NaNO_3 + NaNO_2 + H_2O$	N ₂ O ₅ + H ₂ O= 2HNO ₃	


Азотная кислота

Взаимодействие с неметаллами


Азотная кислота взаимодействует со многими неметаллами, окисляя их до соответствующих кислот:

$$S + 2HNO_3 = H_2SO_4 + 2NO$$

 $3P + 5HNO_3 + 2H_2O = 3H_3PO_4 + 5NO$
 $C + 4HNO_3 = CO_2 + 2H_2O + 4NO_2$

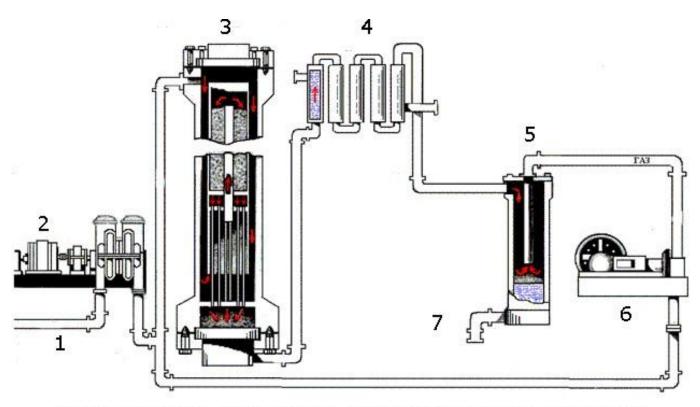
Взаимодействие концентрированной и разбавленной азотной кислоты с металлами

Разложение нитратов

 $NH_4NO_3 \xrightarrow{t} N_2O + 2H_2O$

Получение аммиака

$$N_2 + 3H_2 \leftrightarrow 2NH_3$$


•Катал.: Fe

$$t = 850^{\circ}C P = 5000$$

t =B45x86 a M M + 1 a Q Q: 25 C Q Y o

Циркуляционный процесс

Получение аммиака

1-азотводородная смесь, 2-турбокомпрессор, 3-колонна синтеза, 4-холодильник, 5-сепаратор, 6-циркуляционный насос, 7-аммиак на склад

Физические св-ва NH₃

Газ, с резким запахом, токсичен.

$$t_{K} = -33^{\circ}C$$

Химические св-ва аммиака

$$NH_3$$
 - восстановитель, т.к. N^{-3} но: $NH_3^{+1} + NA_3^0 \rightarrow NANH_2 + H_2^0$ $NH_3 + O_2 \qquad N_2 + H_2O$ $NH_3 + O_2$ Pt $NO + H2O$ $NH_3 + Cl_2 \rightarrow N_2 + HCl$ $NH_3 + Cl_2 \rightarrow N_2 + HCl$

Химические св-ва аммиака

$$NH_3$$
 - основание J_3 - Основание J_4 - J_5 -

Соединения азота в (-) ст. ок.

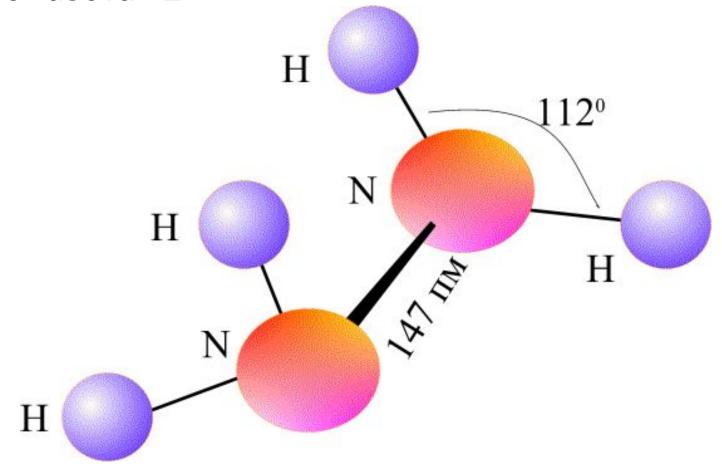
Ст. ок. -3 -2 -1

Аммиак и его производные

 NH_3 $NaNH_2$ — амид натрия Na_2NH — имид натрия Na_3N — нитрид натрия

 N^{-3}

Карбамид $CO(NH_2)_2$


Соединения азота в (-) ст. ок.

$$2Na + 2NH_{3(x)} = 2NaNH_2 + H_2^{\uparrow}$$

 $NaNH_2 + H_2O = NaOH + NH_3^{\uparrow}$
 $M + N_2 (t^{\circ}C) = M_x N_y$

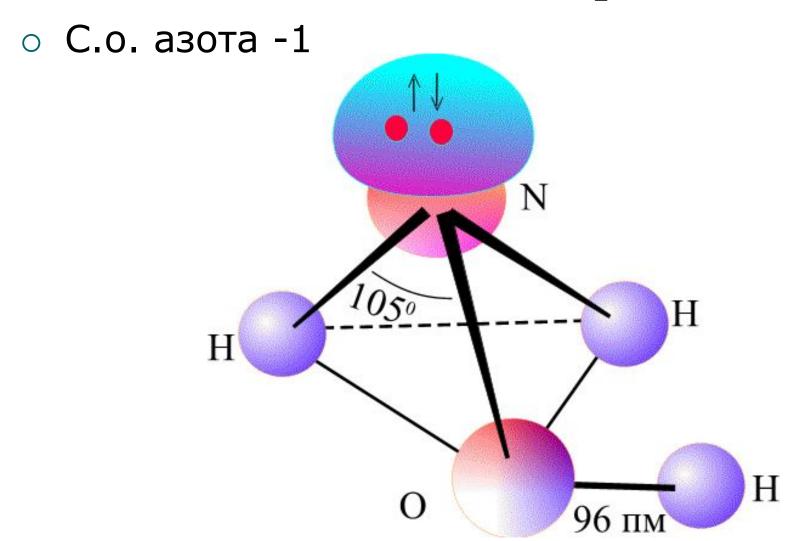
- \circ ионные нитриды: Ca₃N₂, Na₃N, Mg₃N₂
- \circ ковалентные нитриды: BN, AIN, Sn_3N_4
- о Металлоидные нитриды: d-мет.

Гидразин - N₂H₄

о С.о. азота -2

 \circ N_2H_4 – жидкость

$$N_2H_4 + H_2O <=> N_2H_5OH <=> OH^- + N_2H^+$$
 гидроксид гидрозония 5


 N_2H_5Cl - хлорид гидрозония

 $(N_2H_5)_2SO_4$ - сульфат гидрозония

 N_2H_4 - более сильный вос-ль, чем NH_3

N₂H₄+4KMnO₄+4KOH=N₂+4K₂MnO₄+4H₂O

Гидроксиламин - NH₂OH

 $NH_{2}OH+H_{2}O<=>NH_{3}(OH)_{2}$ $NH_{3}(OH)_{2}<=>OH-+NH_{3}OH^{+}$ гидроксид гидроксиламмония

Соли: $(NH_3OH)C1$ хлорид гидроксиламмония $(NH_3OH)_2SO_4$

сульфат гидроксиламмония

Ок-вос. свойства NH, ОН

$$2NH_2OH+2OH^--2e=N_2+4H_2O$$
 $\phi=-3,04B$ $NH_2OH+2H_2O+2e=NH_4OH+2OH^ \phi=0,42B$ $NH_2OH+K_2SO_3=N_2+S+2KOH+5H_2O$ вос-ль $K_2S+NH_2OH+2H_2O=NH_4OH+S+KOH$ $OK-ЛЬ$ SNH_2OH $(t^oC)=NH_3+N_2+H_2O$