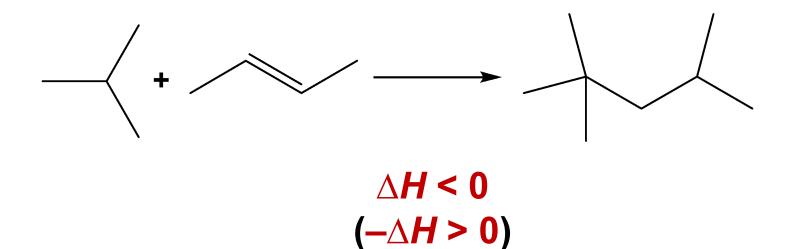
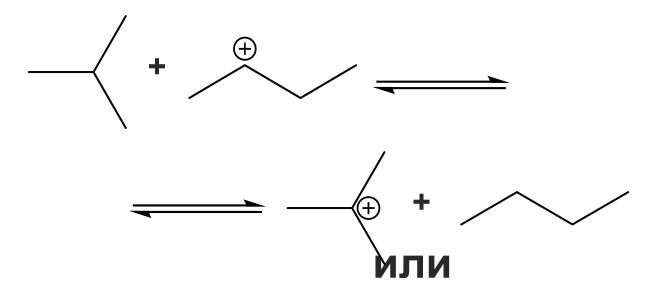
КАТАЛИТИЧЕСКИЕ ПРОЦЕССЫ НЕФТЕПЕРЕРАБОТКИ

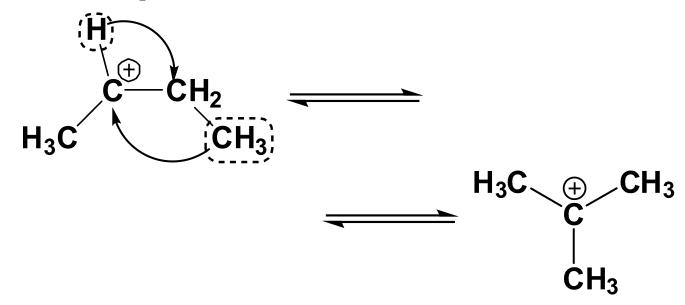


ЦЕЛЬ АЛКИЛИРОВАНИЯ

- Получение высокооктанового бензина из легкого углеводородного сырья:
 - о низших изопарафинов (i-С₄-С₀) и
 - \circ низших олефинов (C_2 - C_5)

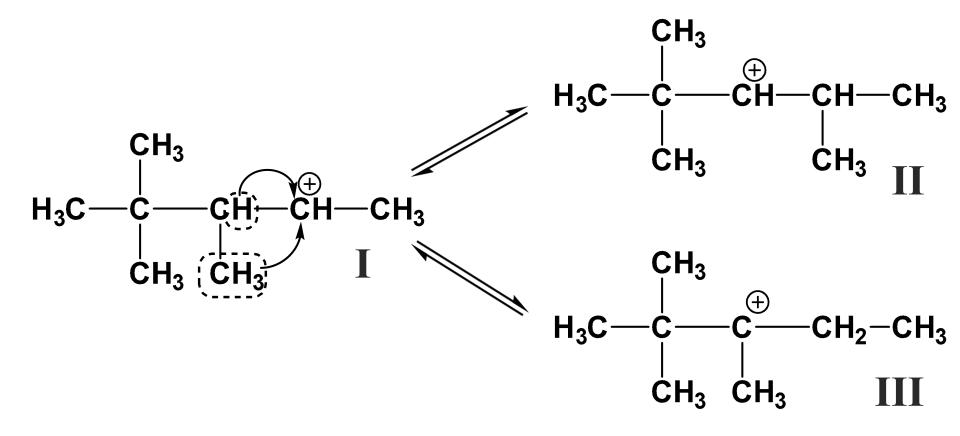

химизм алкилирования

Брутто-реакция
 (на примере алкилирования изобутана бутиленами)



Образование карбоний-иона

- Образование трет-карбкатиона
 - Передача карбкатиона


- Образование трет-карбкатиона
 - Изомеризация

Алкилирование

$$H_3C$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_6 CH_7 CH_8 CH_8 CH_8 CH_8 CH_8 CH_8 CH_8

Изомеризация алкилата

Изомеризация алкилата

Замыкание каталитического цикла

$$i$$
- C_8H_{17} + \longrightarrow i - C_8H_{18} + \longrightarrow

ГУСЛОВИЯ АЛКИЛИРОВАНИЯ

Катализатор

Рабочая температура, °С

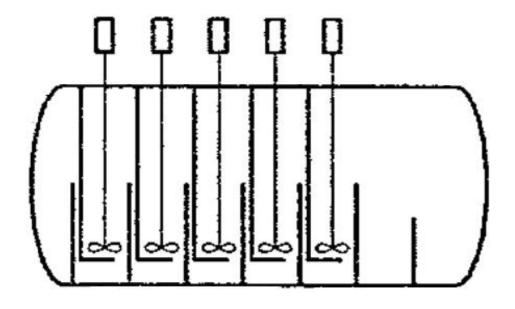
ГУСЛОВИЯ АЛКИЛИРОВАНИЯ

Катализатор	Рабочая температура, °С
H ₂ SO ₄ (>88-90%)	0–10

ГУСЛОВИЯ АЛКИЛИРОВАНИЯ

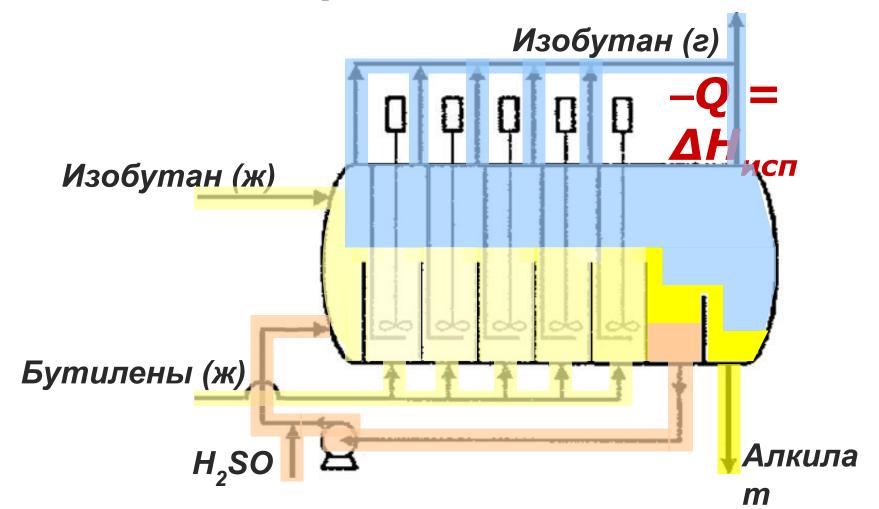
Катализатор	Рабочая температура, °С
H ₂ SO ₄ (>88-90%)	0–10
HF (безводный)	20–30

ГУСЛОВИЯ АЛКИЛИРОВАНИЯ


Катализатор	Рабочая температура, °С
H ₂ SO ₄ (>88-90%)	0–10
HF (безводный)	20–30
AICI ₃	50–60

-УСЛОВИЯ АЛКИЛИРОВАНИЯ

- Сернокислотное алкилирование
 - о Большой избыток изобутана
 - Съем тепла реакции
 за счет испарения
 избыточного изобутана

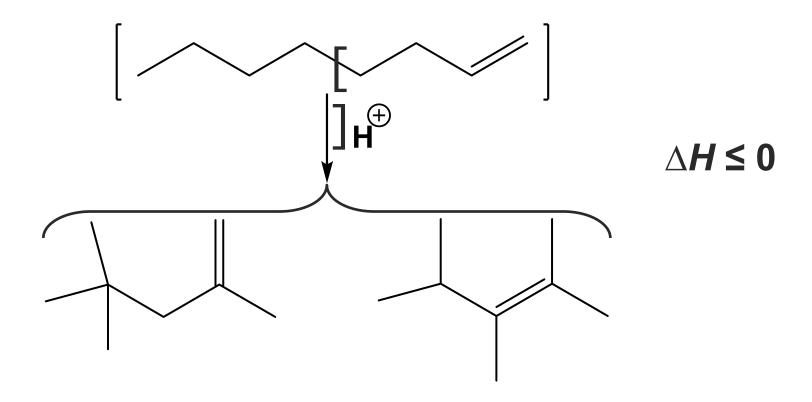

ТЕХНОЛОГИЯ АЛКИЛИРОВАНИЯ

«Автотермический» каскад

-ТЕХНОЛОГИЯ АЛКИЛИРОВАНИЯ

«Автотермический» каскад

ЦЕЛИ ПОЛИМЕРИЗАЦИИ


- Получение
 - о высокооктанового бензина из низших олефинов (ненасыщенных заводских газов)
 - о высших изоолефинов для нефтехимии

ХИМИЗМ ПОЛИМЕРИЗАЦИИ

Брутто-реакции (на примере полимеризации этилена)

ХИМИЗМ ПОЛИМЕРИЗАЦИИ

- Брутто-реакции
 - Изомеризация

МЕХАНИЗМ ПОЛИМЕРИЗАЦИИ

Протонирование олефина

$$H_2C$$
 $+H$
 \longrightarrow
 H_3C
 CH_2
 CH_2

 Рост цепи (катионная полимеризация)

$$H_3C$$
 $+$ H_2C CH_2 $+$ H_2C CH_2 $+$ H_2C CH_2 $+$ U Т.Д.

МЕХАНИЗМ ПОЛИМЕРИЗАЦИИ

Передача цепи

$$R^{\oplus}$$
 H_2C
 CH_2
 $RH + H_3C$
 H_3C

Обрыв цепи

-УСЛОВИЯ ПОЛИМЕРИЗАЦИИ

- Катализаторы
 - Контакт Ипатьева (Н₃РО₄ на пористом носителе пемзе, кизельгуре и т.п.)
 - Алюмосиликаты (цеолиты)

- Давление
 - 3–6 МПа

УСЛОВИЯ ПОЛИМЕРИЗАЦИИ

Реакционная способность олефинов

$$H_3C$$
 $C=CH_2$
 H_3C
 CH
 CH_2
 H_2C
 CH_2
 H_3C
 CH_2
 CH_3C
 CH_4
 CH_5
 CH_5
 CH_5
 CH_6
 CH_7
 CH_8
 CH_9
 CH_9

■ Температура, °С