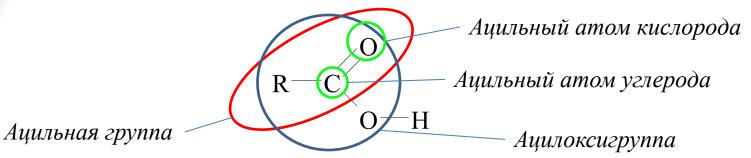


ЛЕКЦИЯ


«Карбоновые кислоты»

Лектор: старший преподаватель
Оренбургского государственного университета,
канд. хим. наук
Строганова Елена Алексеевна

Карбоновые кислоты — органические соединения, имеющие в качестве старшей функциональной группы группу -СООН

Классификация:

По природе остова (ранжирование по ряду): - алифатические

- ароматические

- алициклические

По насыщенности углеродного скелета: - предельные алифатические

- непредельные алифатические

По количеству функциональных групп: - дикарбоновые

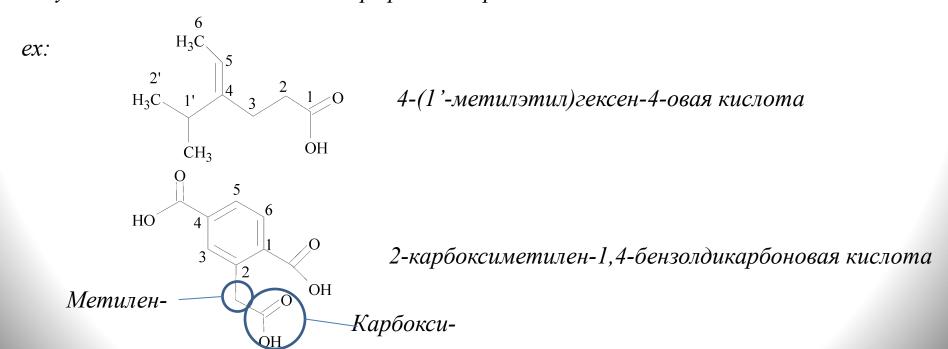
- трикарбоновые и т.д.

По наличию гетерофункциональных групп: - оксикислоты (гидроксокислоты)

- оксокислоты (кето-, альдокислоты)

- аминокислоты

- галогенкислоты


Номенклатура:

1. Систематическая

Заместители с указанием местоположения (по возрастанию позиции) + корень названия углеводорода основной цепи + суффикс «ов» + окончание «ая» + кислота (нумерация начинается всегда с карбоксильной группы);

Примечание:

- 1)В случаях, когда карбоксильна группа связана с алициклом, после названия цикла в конце добавляют «карбоновая кислота».
- 2)В случаях, когда в веществе 3 и более карбоксильных групп, к общему названию одну или две из них называют в префиксе «карбокси»

2. Рациональная

а) На базе второго гомолога ряда (уксусная кислота) путем перечисления связанных со скелетом уксусной кислоты заместителей (в алфавитном порядке); б) На базе тривиального названия кислоты по основной углеродной цепи с указанием местоположения заместителей с помощью букв греческого алфавита.

Ex:
$$H_3C$$
 CH_3 CH

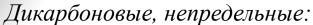
3. Тривиальная

Монокарбоновые, предельные кислоты:

Монокарбоновые, непредельные:

$$H_2$$
С ОН H_3 С ОН H_3 С ОН H_2 С ОН $Kpomohobas$ K

Карбоновые кислоты жирного ряда (жирные кислоты = неразветвленные, алифатические, с четным количеством атомов углерода): CH_3 - $(CH_2)_n$ -COOH


n	Название	Формула
2	Масляная	C ₃ H ₇ -COOH
4	Капроновая	C ₅ H ₁₁ -COOH
6	Каприловая	C ₇ H ₁₅ -COOH
8	Каприновая	C ₉ H ₁₉ -COOH
10	Лауриновая	$C_{11}H_{23}$ -COOH
12	Миристиновая	C ₁₃ H ₂₇ -COOH
14	Пальмитиновая	C ₁₅ H ₃₁ -COOH
16	Стеариновая	C ₁₇ H ₃₅ -COOH
18	Арахинговая	C ₁₉ H ₃₉ -COOH

Структура	Название
CH_3 - $(CH_2)_7$ - CH = CH - $(CH_2)_7$ - $COOH$	Олеиновая
CH_3 - $(CH_2)_4$ - CH = CH - CH_2 - CH = CH - $(CH_2)_7$ - $COOH$	Линолевая
CH_3 - CH_2 - $[CH=CH-CH_2]_3$ - $(CH_2)_6$ - $COOH$	Линоленовая
CH_3 - $(CH_2)_4$ - $[CH=CH-CH_2]_4$ - $(CH_2)_2$ -COOH	Арахидоновая

Дикарбоновые, предельные:

$$HO$$
 CH_2 OH

n	Название	n	Название
0	Щавелевая (соли = оксалаты)	7	Азелаиновая (соли = азелаинаты)
1	Малоновая (соли = малонаты)	8	Себациновая (соли = себацинаты)
2	Янтарная (соли = сукцинаты)		
3	Глутаровая (соли = глутараты)		
4	Адипиновая (соли = адипаты)		
5	Пимелиновая (соли = пимелаты)		
6	Субериновая (соли = суберинаты)		

Ароматические моно-, дикарбоновые кислоты:

бензоиная Фталевая (соли = бензоаты) (соли = фталаты)

OH

Оксо-, гидроксоксилоты:

(conu = малеаты)

Молочная = виноградная (соли = лактаты)

(conu = фумараты)

Пировиноградная (соли = пируваты)

Гликолевая

(соли = гликолаты)

Винная

Салициловая

Галловая (conu = галлаты)

Методы получения

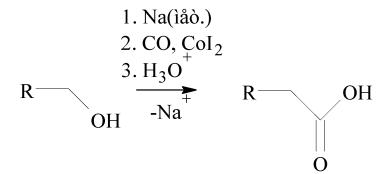
Предельных монокарбоновых кислот

1) Окисление первичных спиртов жесткими окислителями:

KMnO₄, H₂SO₄ (êîíö.)

K₂Cr₂O₇, H₂SO₄ (êîíö.)

HNO3 (êîíö.)


KMnO₄, KOH, t

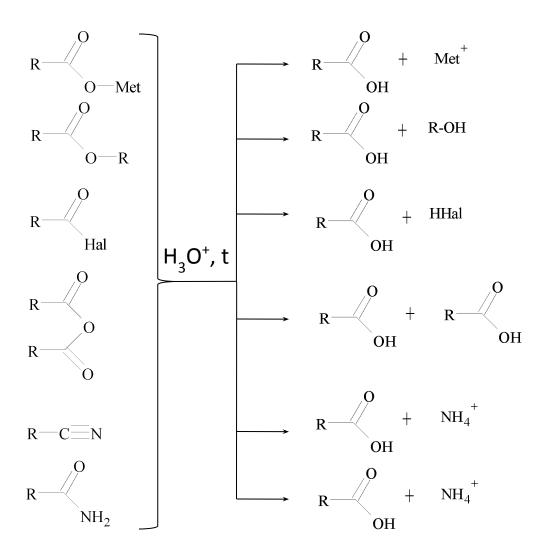
2) Металлокомплексное карбоксилирование:

$$R-CH=CH-R' + CO + H_2O \xrightarrow{Co_4(CO)_8, t} R-CH-CH_2-R' + R-CH_2-HC-R'$$

$$O OH O OH$$

3) Карбонилирование спиртов

4) Окисление альдегидов мягкими окислителями: CrO_3 , H_2SO_4 , H_2O [àöåòîí]


$$Ag_2O, H_2O$$

NaOOC

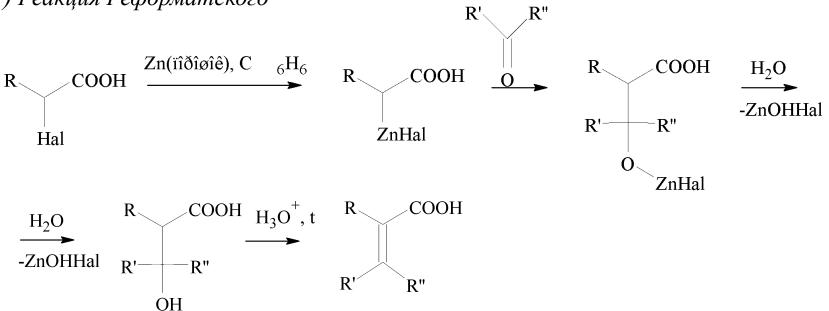
 $COOK$
 Ag_2O, H_2O
 $Ag_$

- 5) Окислительный озонолиз непредельных углеводородов
- 6) Окисление кетонов жесткими окислителями
- 7) Синтез Гриньяра

8) Гидролиз производных карбоновых кислот:

9) Гидролиз геминальных тригалогенпроизводных

10) Промышленное получение муравьиной кислоты


NaOH + CO
$$\xrightarrow{100-150}$$
 C \xrightarrow{O} H $\xrightarrow{H_3O^+, t}$ H \xrightarrow{O} OH

11) Промышленное получение уксусной кислоты

$$HC \equiv CH \xrightarrow{H_2O, H_g^{2+}} H_3C \xrightarrow{O} \xrightarrow{[O]} H_3C \xrightarrow{O} OH$$

II Непредельных монокарбоновых кислот

1) Реакция Реформатского

2) Циангидринный синтез

III Дикарбоновых кислот

1) Промышленный синтез щавелевой кислоты

2) Препаративный синтез малоновой кислоты

a
$$\stackrel{O}{\longrightarrow}$$
 $\stackrel{NaHCO_3, H_2O}{\longrightarrow}$ $\stackrel{O}{\longrightarrow}$ $\stackrel{KCN}{\longrightarrow}$ $\stackrel{O}{\longrightarrow}$ $\stackrel{NC}{\longrightarrow}$ $\stackrel{O}{\longrightarrow}$ $\stackrel{H_3O^+, t}{\longrightarrow}$ $\stackrel{O}{\longrightarrow}$ $\stackrel{O}{\longrightarrow}$

пропиолакто

Н

3) Малоновый синтез янтарной кислоты

 $-4C_2H_5OH$

HOOC

HO OH
$$\frac{2\tilde{N}_2H_5OH, H^+}{OH}$$
 OC $\frac{1_2}{OH_2O}$ $\frac{1_2}{H_5C_2O}$ OC $\frac{1_2}{OH_5}$ $\frac{1_2}{-NaI}$ $\frac{1_2}{H_5C_2OOC}$ OC $\frac{1_2}{Na}$ $\frac{1_2}{H_5C_2OOC}$ $\frac{1_2}{OC_2H_5}$ $\frac{1_2}{-NaI}$ $\frac{1_2}{H_5C_2OOC}$ $\frac{1_2}{OC_2H_5}$ $\frac{1_2}{-AC_2H_5OH}$ $\frac{1_2}{AC_2H_5OH}$ $\frac{1_2}{AC_2H_5OH}$

-2CO₂

COOH

3) Малоновый синтез других дикарбоновых кислот

$$\begin{array}{c} t \\ \hline -2CO_2 \end{array} \qquad HOOC - \left(CH_2\right) - COOH \\ n+2 \end{array}$$

IV Оксикарбоновых кислот

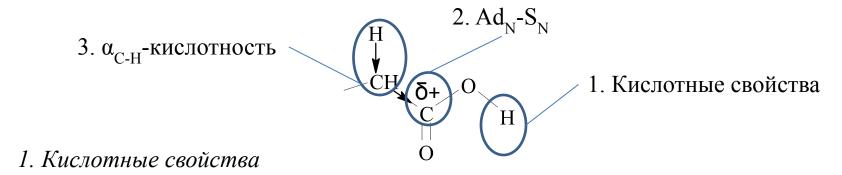
1) Гидролиз галогенпроизводных кислот

2) Гидролиз циангидринов

V Оксокарбоновых кислот

1) Окисление оксикислот

2) Пиролиз винной кислоты – получение пировиноградной кислоты (ПВК)

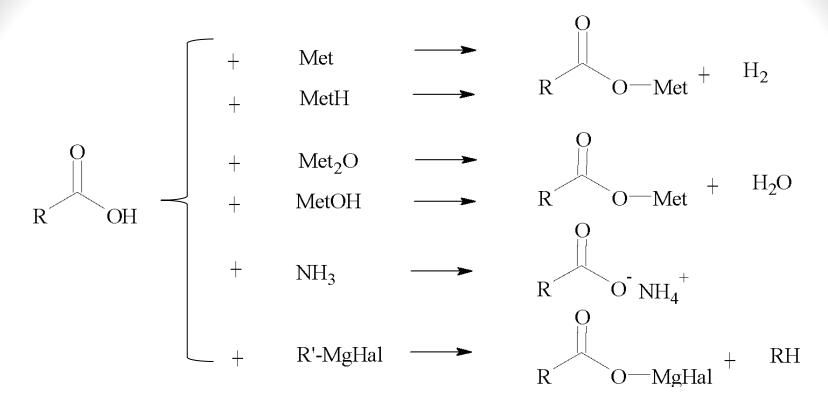

В молекулах карбоновых кислот присутствуют подвижные атомы водорода в составе –СООН групп, способные к образованию водородных связей. Поэтому их температуры кипения гораздо выше, чем у соответствующих альдегидов и спиртов. Алифатические кислоты C_1 – C_3 — жидкости, высшие — твердые вещества. Низшие гомологи очень хорошо растворимы в воде, высшие гомологи – плохо и только при нагревании. В целом КК растворимы в полярных органических растворителях.

Все ароматические КК – кристаллические вещества, очень плохо растворимые в воде. Температура кипения ароматических кислот выше температуры кипения алифатических.

В ИК спектре карбоксильная группа проявляет 2 характерных полосы поглощения: $\nu(C=O)_R = 1740\text{-}1700 \text{ см}^{-1}(c)$, $\nu(C=O)_R = 1800\text{-}1740 \text{ см}^{-1}(c)_{Ar}$, $\nu(O-H) = 3300\text{-}2500 \text{ см}^{-1}(c)$. Поглощение -ОН группы проявляется в виде уширенной полосы в результате образования водородной связи.

Химические свойства

I Алифатических монокарбоновых кислот



Карбоновые кислоты являются яркими представителями кислот Бренстеда-Лоури. В межклассовом ряду кислотности занимают лидирующую позицию. Внутри класса сила кислот тем выше, чем больше самих карбоксильных групп или чем больше отрицательных эффектов со стороны скелета.

$$H_3C$$
 OH CI OH CHOOL

Результатом проявления кислотных свойств является образование соли.

Солеобразование происходит при взаимодействии с сильными нуклеофилами, основаниями Бренстеда-Лоури, металлами, гидридами и оксидами металлов

2. Реакции Ad_N - S_N

 Ad_N - S_N - нуклеофильное присоединение с последующим замещением. Осуществляется при взаимодействии со слабыми нуклеофилами в присутствии кислот Льюиса (обычно в среде минеральных кислот)

1) Этерификация по Фишеру

2) Образование галогенангидридов

Галогенирующие агенты: $SOCl_2$, SO_2Cl , PCl_5 , PBr_5

Хлористый Хлористый тионил сульфурил

$$2PCl_{5} \longrightarrow PCl_{4}^{+} + PCl_{6}^{-}$$

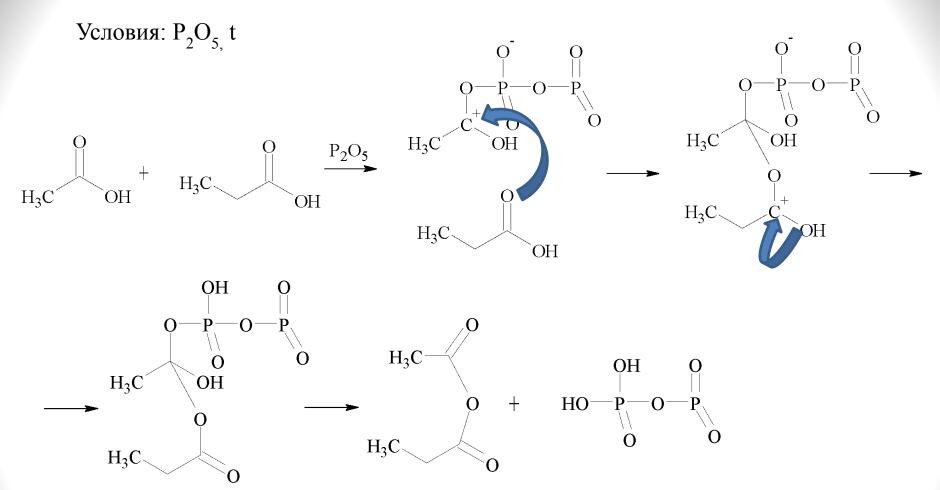
$$PCl_{5} + Cl^{-}$$

$$PCl_{6} - Cl^{-}$$

$$PCl_{7} + Cl^{-}$$

$$PCl_{4} - Cl^{-}$$

$$PCl_{5} - Cl^{-}$$


$$PCl_{6} - Cl^{-}$$

$$PCl_{7} - Cl^{}$$

$$PCl_{7} - Cl^{-}$$

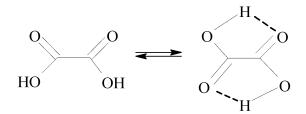
$$PCl_{7} - C$$

3) Образование ангидридов карбоновых кислот (межмолекулярная дегидратация)

3. СН-кислотность проявляется в реакции Гелля-Фольгарда-Зелинского

Реакция α-галогенирования протекает при условиях: Br₂, PBr₃

4. Восстановление карбоновых кислот (до спиртов)


Восстановители: LiAlH₄, NaBH₄

Br

-PBr₃

II Алифатических дикарбоновых кислот

1. Щавелевая кислота

Прямая связь карбоксильных групп приводит к эффекту взаимного стягивания электронной плотности, что способствует легкому протеканию процессов декарбоксилирования и реакций AdN-SN (без активации).

1) Декарбоксилирование

a)
$$Tepmuveckoe \\ + \tilde{N}O_2$$
HO OH OH OH

б) Кислотное

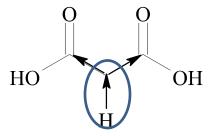
в) Окислительное

O OH
$$(O)$$
, t (O) , t (O) $($

2) Образование оксалилхлорида

O O
$$2PCl_5$$
 O O O O HO OH $-2OPCl_3$ Cl Cl

Оксалилхлорид склонен к гомолитическому типу расщепления С-С связи, что используется в реакциях радикального образования хлорангидридов карбоновых кислот из алканов


$$H_{3}C \longrightarrow CH_{3} + O \longrightarrow CI \longrightarrow H_{3}C \longrightarrow CI \longrightarrow CI \longrightarrow HCI$$

$$O \longrightarrow O \longrightarrow O \longrightarrow CI \longrightarrow CI \longrightarrow CI \longrightarrow CI \longrightarrow CI \longrightarrow CI$$

3) Образование диэтилоксалата

Диэтилоксалат — сильнейший ацилирующий агент, применяемый в т.ч. в реакциях сложноэфирной конденсации Кляйзена

2. Малоновая кислота

Повышенная α-СН-кислотность

Карбоксильные группы по-прежнему оказывают взаимный отрицательный индуктивный эффект, что приводит к реакциям декарбоксилирования. А кроме того, повышенная подвижность протона в α-положении приводит к возможности проводить синтезы с малоновым эфиром.

1) Термическое декарбоксилирование

HOOOH
$$+ CO_2$$
 H_3C

OH

 H_3C

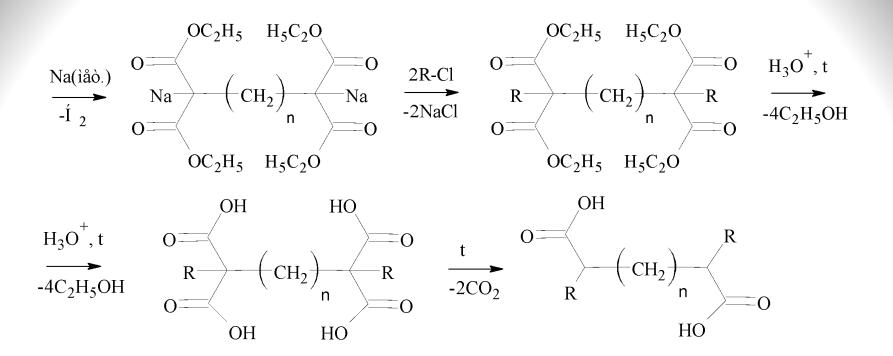
OH

 H_3C

OH

2) Проявление α-СН-кислотности

Синтезы с малоновым эфиром

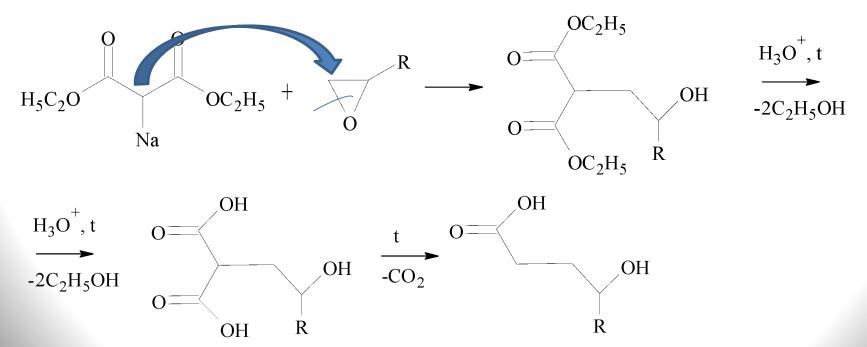

$$\begin{array}{c} O & O \\ + & 2C_2H_5OH \end{array} \xrightarrow[-2H_2O]{} + 2C_2H_5OH \xrightarrow[-2H_2O]{} O \\ OC_2H_5 \xrightarrow[]{} O \\ OC_2H_5 \end{array} \xrightarrow[Na(\mathring{a}\mathring{a}\mathring{a})]{} O \\ OC_2H_5 \xrightarrow[Na(\mathring{a}\mathring{a})]{} O \\ OC_2H_5 \xrightarrow[Na(\mathring{a})]{} O \\ OC_2H_5 \xrightarrow[Na(\mathring{a})]{} O \\ OC_2H_5 \xrightarrow[Na(\mathring{a})]{} O \\ OC_2H_5 \xrightarrow[Na(\mathring{a})]{} O \\ OC_2H_5 \xrightarrow[Na(\mathring{a}]]{} O \\ OC_2H_5 \xrightarrow[Na(\mathring{$$

Натриймалоновый эфир

а Синтез одноосновных кислот с натриймалоновым

)
$$9\phi upo M$$
 $OC_2H_5 + R$
 O

б) Синтез двухосновных кислот с натриймалоновым эфиром


в) Синтезы Михаэля (сопряженное присоединение натриймалонового эфира к винил-функциональным производным)

$$H_5C_2O$$
 OC_2H_5
 H_3C
 OC_2H_5
 OC_2H_5

β-метил-ү-формилмасляная кислота

Этот метод подходит для синтеза γ-оксокислот, γ-альдокислот, γ-нитрилкарбоновых кислот, γ-алкоксиоксокислоты

г) Синтез ү-оксикислот

3. Янтарная кислота

Во многом свойства янтарной кислоты схожи со свойствами монокарбоновых кислот. Начиная с янтарной способность дикарбоновых кислот к декарбоксилированию исчезает. При этом появляется способность к образованию циклических производных

1) Образование циклического ангидрида янтарной кислоты

$$\begin{array}{c|cccc}
O & & O & \\
OH & & \xrightarrow{P_2O_5} & & O \\
OH & -HOP_2O_5 & & O
\end{array}$$

2) Образование циклического амида янтарной кислоты (сукцинимида)

3) Конденсация диэтилсукцината с альдегидами/кетонами (реакция Штоббе)

4. Адипиновая кислота

1) Образование циклопентанона

$$\begin{array}{c|c}
O \\
O \\
Ba
\end{array}$$

$$\begin{array}{c|c}
\bullet \\
-CO_2 \\
-BaO
\end{array}$$

2) Реакция Дикмана (внутримолекулярная сложноэфирная конденсация)

III Оксикислот

1) Особенности химических свойств а-оксикислот

а) Образование лактидов

б) Кислотное расщепление

в) Восстановление ОН-группы

2) Особенности химических свойств β-оксикислот - образование α,β-непредельных кислот

3) Особенности химических свойств ү, б-оксикислот – образование лактонов

$$\begin{array}{c|c} R & OH & t \\ \hline OH & O & \\ \hline \end{array}$$

В целом для всех оксикислот характерны реакции, связанные с проявлением свойств вторичных спиртов (S_N , образование простых эфиров) и предельных монокарбоновых кислот

IV Оксокислот

- 1) Особенности химических свойств а-оксокислот
 - а) Окислительное декарбоксилирование

$$R \longrightarrow O$$
 Ag_2O, t $R \longrightarrow O$ $+ CO_2$ OH

б) Кислотное декарбоксилирование (H_2SO_4 разб., 150 С)

$$R \xrightarrow{O \\ OH} \frac{H_2SO_4 (\eth\grave{a}(\delta\grave{a})\acute{a} 150C)}{OH} + CO_2$$

б) Кислотное декарбоксилирование (H_2SO_4 конц., 80 C)

2) Особенности химических свойств β -оксокислот – кетонное расщепление