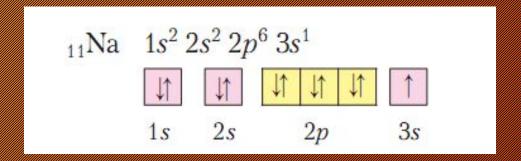
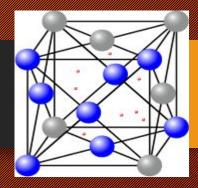
2. Неорганическая химия.


2.1. Металлы и их соединения

2.1.1. Общая характеристика металлов.

ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА


ПЕРИОДЫ							8	Г	Р	У	П	П	Ы	- (Э	Л	Е	М	E	Н	Т	0	В						
петиоды	Α		В	Α	II	В	Α	Ш	В	Α	IV	В	Α	V	В	Α	VI	В	Α	VII	В	Α		,	VIII			В	
1	Hydrogen Водород																		(H)		He Helium Гелий	4.002602	2 Сим	вол элемента Относите			L	
2	Li Lithium Литий	6.941		Be Berylliun Берилл	9.01		Borum Bop	10	.811	С Carbon Углеро	eum	6 4 011	Nitroge A30T	14.0		O Oxyger Кислој	ium	8 ½ 999	Fluorui Фтор	18 m	9 72	Neon Heoh	20.179		Argon Apron				
3	Na Natrium Натрий	22.99	2	Mg Magnesi Магний	24.3		Alumini Алюмі	um	13 3 .9815 ²	Silicium Kpemhi	1	14 ⁴ 8	Phosph Фосфо	30.9		Sulfur Cepa		16 ⁶ 8	Cl Chloriu Хлор		.453	Argon Apron	39.948	H	Іазвание элем Расп	ределение эл	ектронов на жих уровнях		
4	К Kalium Калий	39.098	8 2	Са Calcium Кальци	40.0	20 g g g g g g g g g g g g g g g g g g g	21 244.9	Sca	SC andium андий	22 2 47.9	Tita	T i anium Гитан	23 5 50.9	9 41 Vanad Вана		24 5 51.9	Chro	Cr omium Xpom	25 5 5 5 5 5 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Man	/n ganum оганец	2 26 8 55.84	7 Fe Ferrum Железо	1	Соbaltu Кобал	m	Nico		
7	29 8 63.546	Cupru Med		30 65.39	Zin		Gallium Галий		31 3 .72 2	German Герман	nium	32 ⁴ ₁₈ 59 ⁸ ₂	As Arsenio Mышь	74.9	33 18 92 2	Seleniu Seleniu Селен	78 .	34 18 96 2	Bromu Bromu Bpom		35 7 .904 2	Krypton Kpunton	83.80 s	5 8 5 2					
5	Rb Rubidium Рубидий	37 85.468	18 8 2	Sr Strontiur Стронці	87.6	38 ² 8 2 ¹⁸ 8 2 2	39 88.9		Yttrium	40 18 91.2	Zirco	Zr	1 41 18 92.9	Niol	b bium бий	42 18 95.9 2 N	lolybda	O lenum пбден	2 43 18 97.9	Tech	TC netium неций	15 44 18 101.0	7 Ru Ruthhenium Рутений	1 2	Rhodiu Pogr	m 2	Palla	adium	
5	18 107.86	Argentu Cepedi	m	48 18 18 112.4	Cadn	мий	In Indium Индий		49 3 18 4.82 8 2	Sn Stannu Олово	m	50 ⁴ ₁₈ 3.71 ¹⁸ ₈	Stibium Cypьм	121.	51 5 18 75 8 2	Te Telluriu Теллур	m	52 6 18 7.60 8 2	lodum Иод	126	53 7 18 9045 8 2	Xe Xenon Kcehoh	131.29	8 8 8 5 2					
6	Cs Cesium Цезий	132.90	5 18 18 8 2	Bа Barium Барий	137.	56 ² 8 18 18 8 2	57 138.9	055 Lant	.а* hапит антан	72 10 32 18 178.	Ha	Hf fnium фний	² 73 ³² 180 ⁸ 2	Tanta	alum	74 132 143 144 183.		W mium dpam	2 75 13 75 32 186 8 2	.207 Rh	Renium Pehuй	2 76 32 190.2	Os Osmium Осмий		22 Iridu Ириді	m 🖁	Pla	tinum	
0	79 196.96	А цги Золо	ım	280 32 200.5 5 8 H	ydrargy		Thalliur Талли	m й	81 3 4.38 32 4.38 18 8	Plumbu CBине	m	82 ⁴ ₁₈ 7.19 ³² ₁₈	Bi Bismut Bucmy	208.9 hum	8 2	Poloniu Poloniu Полон	m	84 18 9.98 18	Astatiu Actat		9.99 18 85 7 18 9.99 18 8	Radon Pagon	[222]	8 8 2 8 8 8					
	Fr Francium Франций	87 [223]	18 32 18 8	Radium Радий	[226	88 2 8 18 32 18 8 2	89 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	A	С** ctinium тиний		200		2 105 32 2 262 18 8 2	Dubr	b nium оний	106 12 106 332 18 8 2	Seabo	g orgium оргий	2 107 32 [262 18 8 2	В В	3h ohrium Борий	2 108 32 [265] 18 8 2	Hs Hassium Xaccuñ	18 8	Meitneriu Мейтнері	m 18 18	69]		
ФОРМУЛЫ ВЫСШИХ ОКСИДОВ	R ₂ O			RO			R_2O_3		3	RO ₂			R ₂ O ₅			RO ₃		R ₂ O ₇			RO ₄								
ФОРМУЛЫ ЛЕТУЧИХ ОДНОРОДНЫХ СОЕДИНЕНИЙ						241	11111 15			RH₄			RH ₃	3		RH ₂			RH										
ЛАНТАНОИДЫ*	140.12 L	lerium ф	140.90 Pras	eodymium разеодим	3 N	4 No leodymiu Heogli	im 3	91 Prome	thium } етий	50.36 Sama Cama	apий	151.96 E	uropium вропий	Gado Гадо	Gd olinium линий		Tb Terbium Тербий	1	Dysprosiur Dysprosiur Диспрози	n i	4.930 Holm Голы	nium 3 мий	26 Erbium Эрбий		lium § лий	ния атомная масса Порядковый номер 18			
АКТИНОИДЫ**	90 232.038	Th 🕒	1 231.04	, Pa	92 238.0	3 Umai	93	7.05 Nont	lp 📑	44.06 Pluto	u 2	43.06	4m	96 247.07	m	97 247.07	Bk	98 251.	08 C	99 25	2.08 E	S 100 257.	"Fm	258.10 M	102 259.	No	260.10	Lr	

Строение атомов металлов

Внешний электронный уровень элементов, которые относят к металлам заполнен электронами менее чем наполовину (обычно 1-2).

Строение простых веществ - металлов

Часть атомов в кристаллической решетке ионизирована, т.е. потеряла электроны внешнего электронного слоя и свободные электроны равномерно распределены по всему кристаллу. Электроны присоединяются к ионам металла и те превращаются в атомы, а другие атомы металла в это время теряют свои электроны и превращаются в ионы. Т.е. происходит своеобразный обмен электронами. Валентные электроны находятся одновременно во владении всех атомов и ионов металла (т.е. притягиваются к ним) и называются «электронным газом. Такая связь между атомами в кристалле металла называется металлической. И кристаллическая решетка металлов тоже называется металлической.

Физические свойства металлов

- 1. металлы при н.у. находятся в твердом агрегатном состоянии,
 - исключение ртуть;
- 2. все металлы непрозрачные и отражают падающий;
- 3. все металлы могут проводить электрический ток;.
- 4. все металлы теплопроводны;
- 5. все металлы в той или другой степени пластичны;
- б. по плотности металлы делят на легкие (меньше 5 г/см³) и тяжелые;
- 7. все металлы не растворимы в воде, но растворяются друг в друге (обычно в расплавленном виде). Такие растворы называют сплавами.

Химические свойства металлов

Металлы в химических взаимодействиях могут только отдавать электроны, т.е. проявляют восстановительные свойства, на условия протекания этих реакций влияет то, с какой лёгкостью атомы металла отдают свои электроны.

 $Me^0 - ne^- \rightarrow Me^{+n}$ Например:

ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ МЕТАЛЛОВ

Увеличение восстановительных свойс<u>тв металлов</u>

LI K BA CA NA MG AL MN ZN CR FE CO SN PB CU HG AG AU

LI K BA 2 CA 2 NA MG 2 AL 3 MN 2 ZN 2 CR 2 FE 2 CO 2 SN 2 PB 2 CU 2 HG 2 AG 2 AU

3 CU 2 HG 2 AG 2 AU

Увеличение окислительных свойств ионов

									No.										
			Ca	ANa /	Mg	A	Mn	Ž	Ct	18'e		Su/P			Ci	Hg//A	g	Au	
Восстановительная способность металлов в свободном состоянии					Умен	нынае	сея												
Взаимодействие с кислородом воздуха	Быет при темпе		05	ляется ычной	X/////////////////////////////////////	ию ок	исыясяся	при о	бычно	ой тем	перату	ре или п	ои наг	ревані	NY	19	е окислян	кэто	
Взаимодействие е водой	При темпе выдел образ	mer yene	ype ся Я	ычной Н ₂ и		греван	ии выде	пяется	ВОДО	обд ди	образу	ютея окс	иды		Не вы	гесняю	т водород	из вод	ы
Взаимодействие с кислотами	Bare	CHSH	OT BO2	юрод х	з разбан	леннь	іх кисло	г (кро	me HIN	(O ₃)					X ////////////////////////////////////	вытесн ленны	яют вод х кислот	ород	ИЗ
															Pearир HNO _з конц.	1/1	Растворя только в водке»		кой
Нахождение в природе	Тольк	O B	еоеди	нениях								В соед виде	инони	ISIX W	в сво	бодном	Главным в свобод		
Способы получения	Эдека	nog	us pac	шаво			Восста водных					тивнымі							
Окислительная способность ионов металлов	ī.	K	Ca	Xa V	Mg	A1 ⁸	Mn	Zn	Ct	Fe	Ni	Sn	Pb	Ħ	Cu	H Hg	Ag	Pt	At
						возрас													

1. Окисляются неметаллами

$$4Li + O_2 = 2Li_2O$$

$$2Na + O_2 = Na_2O_2$$

$$2Mg + O_2 \xrightarrow{t} 2MgO$$

Название продукта: неметалл (ид) + металл (в род. падеже +

степень окисления, если переменная)

$$2Ag + S \xrightarrow{t} Ag_2S$$

$$2Fe + 3Br_2 \xrightarrow{t} 2FeBr_3$$

$$2Na + Cl_2 = 2NaCl$$

2. Окисляются ионами водорода в составе воды

$$2K + 2H_2O = 2KOH + H_2\uparrow$$

$$3Fe + 4H_2O \xrightarrow{t} Fe_3O_4 + 4H_2\uparrow$$

 металл должен находиться в ряду активности металлов до магния;

- продуктом реакции должна быть растворимое основание;
- при повышенной температуре окислительная способность ионов водорода увеличивается, а нерастворимые основания, которые образуются в реакции разлагаются на оксид металла и

3. Окисляются ионами водорода в составе кислот

$$Zn + 2HCl = ZnCl_2 + H_2 \uparrow$$

$$Mg + H_2SO_4 = MgSO_4 + H_2\uparrow$$

2HCOOH + Ca
$$\rightarrow$$
 (HCOO)₂Ca + H₂ \uparrow

- металл должен находиться в ряду активности металлов до водорода;
- щелочные металлы не рекомендуется использовать в данных реакциях, так как они будут взаимодействовать ещё и с водой;
- продуктом реакции должна быть растворимая соль, так при образовании осадка дальнейшее протекание реакции невозможно;
- для концентрированной серной и азотной кислот в реакции с металлами есть свои.

4. Окисляются ионами металлов

Ме + соль = новая соль + новый Ме

- металл должен находиться в ряду активности левее металла, который образует соль;
- в результате взаимодействия должна образоваться растворимая соль, так как при образовании осадка реакция прекращается;
- не рекомендуется использовать щелочные металлы, ввиду того, что они будут взаимодействовать ещё и с водой

$$2Al + 3CuCl_2 = 2AlCl_3 + 3Cu \downarrow$$

$$Mg + Pb(NO_3)_2 = Mg(NO_3)_2 + Pb\downarrow$$

Получение: восстановление металлов из их соединений

$$Me^{+n} + ne^- \rightarrow Me^0$$

$$Mg + SnO_2 \rightarrow MgO + Sn$$

$$H_2 + CuO \rightarrow H_2O + Cu$$

$$C + Fe_2O_3 \rightarrow CO_2 + Fe$$

$$NaCl \rightarrow Cl_2^0 + Na^0$$

