
Chapter 4: Trees

Radix Search Trees

Lydia Sinapova, Simpson College

Mark Allen Weiss: Data Structures and Algorithm Analysis in Java

2

Radix Search Trees

❖ Radix Searching
❖ Digital Search Trees
❖ Radix Search Trees
❖ Multi-Way Radix Trees

3

Radix Searching

Idea: Examine the search keys
 one bit at a time
Advantages:

reasonable worst-case performance
easy way to handle variable length keys
some savings in space by storing part of
 the key within the search structure
competitive with both binary search trees
 and hashing

4

Radix Searching

■ Disadvantages:
■ biased data can lead to degenerate

trees with bad performance
■ for some methods use of space is

inefficient
■ dependent on computer’s

architecture – difficult to do efficient
implementations in some high-level
languages

5

Radix Searching

● Methods
■ Digital Search Trees

■ Radix Search Tries
■ Multiway Radix Searching

6

Digital Search Trees

Similar to binary tree search

Difference:

Branch in the tree by comparing the
key’s bits, not the keys as a whole

7

Example
A 00001
S 10011
E 00101
R 10010
C 00011
H 01000
I 01001
N 01110
G 00111
X 11000
M 01101
P 10000
L 01100

A

P

X

M

E

G

C

L

H

NI

S

R

10

0

0
0

0

0

0

0

0

0

0

0

0

1

1
1

1
1

1

1

1
1

1

1

1

8

ExampleA

P

X

M

E

G

C

L

H

NI

S

R

10

0

0
0

0

0

0

0

0

0

0

0

0

1

1
1

1
1

1

1

1
1

1

1

1

Z
0 1

inserting Z = 11010
go right twice
go left – external node
attach Z to the left of X

9

Digital Search Trees

 Things to remember about digital search
trees:
Equal keys are anathema – must be kept
in separate data structures, linked to the
nodes.

Worst case – better than for binary
search trees – the length of the longest
path is equal to the longest match in the
leading bits between any two keys.

10

Digital Search Trees

Search or insertion requires about log(N)
comparisons on the average and b
comparisons in the worst case in a tree
built from N random b-bit keys.

No path will ever be longer than the
number of bits in the keys

11

Radix Search Trees

If the keys are long digital search trees
have low efficiency.

Radix search trees : do not store keys in
the tree at all, the keys are in the external
nodes of the tree.

Called tries (try-ee) from “retrieval”

12

Radix Search Trees

Two types of nodes

Internal: contain only links to other
nodes

External: contain keys and no links

13

Radix Search Trees
To insert a key –

1. Go along the path described by the leading bit
pattern of the key until an external node is reached.

2. If the external node is empty, store there the
new key.
 If the external node contains a key, replace it
by an internal node linked to the new key and the old
key. If the keys have several bits equal, more internal
nodes are necessary.

NOTE: insertion does not depend on the order of the keys.

14

Radix Search Trees

To search for a key –

 1. Branch according to its bits,
 2. Don’t compare it to anything, until we
 get to an external node.
 3. One full key comparison there
 completes the search.

15

ExampleA 00001
S 10011
E 00101
R 10010
C 00011

A C

E

R S

0

0

0

0

0

0

0

1

1

1

1
1

1

1

1

0

16

Example - insertion
A 00001
S 10011
E 00101
R 10010
C 00011
H 01000

A C

E

R S

H

0

0

0

0

0

0

0

1

1

1

1
1

1

1

1

0

External node - empty

17

Example - insertion
A 00001
S 10011
E 00101
R 10010
C 00011
H 01000
I 01001

A C

E

R S
H

0

0

0

0

0

0

0

1

1

1

1
1

1

1

1

0
I

0

0

0

1

1

1

External node - occupied

18

Radix Search Trees - summary

● Program implementation -
■ Necessity to maintain two types of nodes
■ Low-level implementation

● Complexity: about logN bit comparisons in average case
and b bit comparisons in the worst case in a tree built
from N random b-bit keys.

Annoying feature: One-way branching for keys with a
large number of common leading bits :
The number of the nodes may exceed the number of the keys.
On average – N/ln2 = 1.44N nodes

19

Multi-Way Radix Trees
✔ The height of the tree is limited by the number of

the bits in the keys
✔ If we have larger keys – the height increases. One

way to overcome this deficiency is using a
multi-way radix tree searching.

✔ The branching is not according to 1 bit, but rather
according to several bits (most often 2)

✔ If m bits are examined at a time – the search is
speeded up by a factor of 2m

✔ Problem: if m bits at a time, the nodes will have
2m links, may result in considerable amount of
wasted space due to unused links.

20

Multi-Way Radix Trees -
example

Search – take left,
right or middle
links
according to the
first two bits.
Insert – replace
external node by
the key
(E.G. insert T 10100).

X

A C E G N P

H
I L M R S

00
01

10
11

T

Nodes with 4 links – 00, 01, 10, 11

21

Multi-Way Radix Trees

Wasted space – due to the large number of
unused links.

Worse if M - the number of bits considered, gets
higher.

The running time: logMN – very efficient.

Hybrid method:
Large M at the top,
Small M at the bottom

