
Unix/Linux commands and
shell programming

Clemson University
PARL

Presented by Tim Shelling, UNIX guru

UNIX Overview
Why UNIX?

– Control
• Commands often provide complete access to the system and its

devices
• Most devices can be manipulated just like files

– Flexibility
• Commands are just programs
• Commands have common interface to allow interoperation with

other commands
• The UNIX shells provide the “glue” for this `

– Reliability
• Commands are typically lightweight since they typically do little

more than invoke operating system calls
• Individual commands that are broken can easily be replaced

– Summary: All the above translate into…
POWER

UNIX: The Command Line
• Accessing UNIX through a terminal

• telnet [hostname] [port]
– The omnipresent failsafe. Nowadays, turned off due to lack of

adequate security.
• ssh [user@]hostname

– Secure. Data is encrypted over “the wire”. What we use.
– Not always available outside CU due to different versions,

implementations, platform availability.

• Log in!
3 tries to get valid username and password right

• Show who is logged in
• w or who
• finger

• Logout!
• exit
• CTRL-D

UNIX: Accessing Documentation
• Commands are generally documented using the

command man.
– man pages are subdivided into various sections
– Example: Documentation of the man command

man man
– Example: Documentation of the time command

man time
– Example: Documentation of the time C library function

man 3 time

• man will present the manual page of the
specified entry using more or less.
– In Linux, the default is less, but can be overridden
– less presents a screen-full at a time. ‘spacebar’ moves forward, ‘b’

moves backward, ‘$’ moves to end, ‘q’ quits, ‘?’ helps.

UNIX: Accessing Documentation

• A few commands (such as diff, gcc, awk) are
doccumented using info.
– info is GNU-specific
– Uses its own hypertext ‘viewer’.

• arrow-keys select different links
• space pages forward
• ‘u’ goes back “up” a hyperlink level, like “back” in browsers

• Most commands have HTML references on the
WWW.

• Don’t panic. Just e-mail me or Dan.

UNIX terminal management:
screen

Help CTRL-A ?
Copy/Scrollback CTRL-A [
Paste CTRLA]
Lock CTRL-A x
Detach CTRL-A d
New Screen CTRL-A c
Next/Previous CTRL-A n / CTRL-A p
Reattach screen –D –A –r
List active screen -ls

UNIX: Getting around the
filesystems

• UNIX files are organized just like they are with PC’s and
MAC’s
– Files are contained in collections of Directories.
– Directories may contain other Directories
– Different drives are “mounted” onto directories – there are no

drive letters!!
– The “top level” directory is called the “root” directory and is

referred to by “/”
– The current directory is referred to by “.”
– The directory one level up is referred to by “..”
– More dots don’t get you more levels up. ☹
– Shortcuts in Windows are called soft-links. Act just like normal

files, directories, or whatever it is they refer to.
– Other filetypes include named pipes, character devices, block

devices, sockets.

UNIX: Getting Around
• Commands to navigate the directories:

– pwd
– ls

ls file; ls directory ; ; ls –a ; ls –l ; ls -R
– cd

cd ..
cd /home/tim/projects
cd ~/projects
cd ~tim/projects
cd $HOME/projects

– mkdir
– rmdir
– mv

mv oldfilename newfilename
mv file1 file2 file3 newtargetdirectory

– cp -- syntax like mv
cp –r dir1 dir1copy

– rm
– push
– pop
– find

find . –ls
find . –type d –print
find . –type f –exec “echo” “{}” “;”

UNIX: More Standard Commands

echo print out a string
echo “$HOME is where I want to be”

cat Output specified files in sequence
cat file1 file2 file3

whereis Show where a file can be found
printenv Display all environment variables
grep Get Regular Expression and Print
head first few lines of output
head -5

tail last few lines of output
tail -8

UNIX command line tricks
• Shell “glob”

mkdir /tmp/moved
mv * /tmp/moved
cp /tmp/moved/* .

• Filename Completion (tcsh, bash)
ls /tmp/m<TAB>

• Command line history (tcsh)
– history
– CTRL-P and CTRL-N, down/up arrows
– !previous – Runs the previous command beginning

with the word previous.

UNIX: The SHells
• The “Shell” is simply another program which

provides a basic human-OS interface.
• Shells can run interactively or as a shell script
• Two main ‘flavors’ of Shells:

– Bourne created what is now known as the standard
shell: “sh”, or “bourne shell”. It’s syntax roughly
resembles Pascal. It’s derivatives include “ksh” (“korn
shell”) and now, the most widely used, “bash”
(“bourne shell”).

– One of the creators of the C language implemented
the shell to have a “C-programming” like syntax. This
is called “csh” or “C-shell”. Today’s most widely used
form is the very popular “tcsh”.

Unix: SH basics
– Modifying environment variables

sh: PAGER=/usr/bin/less; export PAGER
bash: export PAGER=/usr/bin/less
tcsh: setenv PAGER /usr/bin/less

– Execute an external command (sh)
somecommand
somecommand: command not found
echo $PATH
/home/tim/bin:/usr/local/bin:/usr/bin:/bin
pwd
/home/tim/bin/project1
./somecommand
Hello world!
/home/tim/bin/project1/somecommand
Hello world!
PATH=$PATH:`pwd`; export PATH
somecommand
Hello world!

UNIX: Bourne SHell script syntax
• The first line of a sh script must start as follows:

#!/bin/sh
• Any unquoted # is treated as the beginning of a comment until

end-of-line
• Every line is first parsed for shell metacharacters. These include

characters that the shell will do something with and include:
‘ “ & > < $ % * [] ? ! ` ~ ; | , { }

• Distinct commands may be separated by end-of-line, semicolon, or
comma

• Environment variables are $EXPANDED
• “Back-tick” subshells are executed and `expanded`
• Pipelines are created | joining the output of | one program | with the

next
• Any commands left over must be builtins or external commands.
• An error will fail the pipeline, but the script will continue!

Unix Pipelines: Pipes are smokin’!

• Pipes take the output of the first program
and feed that output into the input of the
next program.

• Also sometimes known as “filters”.
• Examples:

last | less

last | grep ^root | less

last | grep ^root | cut -d -f 2 | less

grep “error” something.out | tail -1

Unix redirection: Lesser and
Greater

• >&filename redirects the standard output and error to the file called
filename:
last | grep ^root >& root-logins.txt
less root-logins.txt

• >filename redirects just standard output
• Don’t Clobber me! By default, > will overwrite existing files, but you can turn

this off using shell settings and/or environment variables.
• Appendicitis! You can append to existing files this way:

- sh: >>filename >&1
- csh: >>&filename

- Use < to redirect a file to a command’s standard input
cat calculation.txt
(3+2)*8
bc < calculation.txt
40

• Useful when a program does not already query the command line for files to
read

Unix Shell Scripting: Conditional
Execution

• program1 && program2
– Program 2 will execute if and only if program1 exited

with a 0 status
– Example:

• project1 && echo “Project1 Finished correctly!”
• program1 || program2

– Program 2 will execute if and only if program1 exited
with a non-0 status

– Example:
• project1 || echo “Project1 FAILED to complete!”

• Exit a script with an error:
• exit 1

UNIX commands for programmers
– man –k Search man pages by topic
– time How long your program took to run
– date print out current date/time
– test Compare values, existence of files, etc
– tee Replicate output to one or more files
– diff Report differences between two files
– sdiff Report differences side-by-side
– wc Show number of lines, words in a file
– sort Sort a file line by line
– gzip Compress a file
– gunzip Uncompress it
– strings Print out ASCII strings from a (binary)
– ldd Show DLLs/SOs program is linked to
– nm Show detailed info about a binary obj

Unix Shell scripting: foreach loops

• These are useful when you want to run the same
program in sequence with different filenames.

• sh example:
for VAR in test1 test5 test7b finaltest; do

runmycode $VAR >$VAR.out
done

• csh example:
foreach VAR (test1 test5 test7b finaltest)

runmycode $VAR >$VAR.out
end

Unix job control
• Start a background process:

– program1 &
– program1

Hit CTRL-Z
bg

• Where did it go?
– jobs
– ps

• Terminate the job: kill it
– kill %jobid
– kill pid

• Bring it back into the foreground
– fg %1

• Start a job in the future
– at

Regular Expressions

• Powerful language for specifying strings of
text to be searched and/or manipulated.

• Used by
– grep “Get Regular Expression and Print” – search files line by line
– sed Simple Editing tool, right from the command line
– awk Scripting language, executes “program” on matching lines
– perl Pathological Rubbish Lister. Powerful programming language

• Note: These are not “file-globs”. The syntax is
similar, but the semantics are slightly different!

• Cannot be used to match nested structures

Regular Expressions: Summary
• Fundamentals:

Match the specified character unless it is a ...
. Match any character (except EOL)
[character class] Match the characters in character class.

[start-end] start to end
[^character class] Match anything except the character class.

$ Match the end of the line
^ Match the beginning of the line
* Match the preceeding expression zero or

more times
? Match the preceeding zero or one time
| Match the lef hand side OR the right side
(regexp) Group the regular expression
\ Treat next character literally (not specially)

• Examples:
Match a line beginning with a space-padded line number and colon.

^[\t]*[0-9][0-9]*:
Match my name (various spellings)

(Tim Shelling)|(TJS)|(T\. Shelling)|(Timothy J\. Shelling)
Match if the line ends in a vowel or a number:

[0-9aeiou]$
Match if the line begins with anything but a vowel or a number:

^[^0-9aeiou]

Getting files from and to Unix

Windows PC SAMBA
FTP/SFTP

DOS/Win Floppy Disk mcopy, mdir, mdel, etc
Internet FTP, ncftp

lwp-download
mail

Archives ar
tar
zip, unzip (if available)

