Комплексиметрическое титрование

План

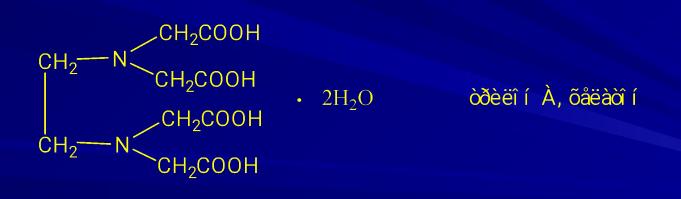
- Сущность метода
- Требования, предъявляемые к реакциям в комплексиметрии
- Классификация методов комплексиметрии
- Комплексонометрия
- Комплексоны
- Комплексы с ЭДТА
- Титранты метода
- Кривые титрования
- Индикаторы комплексонометрии.
- Применение комплексонометрического титрования
- Меркуриметрия

Требования, предъявляемые к реакциям

- Стехиометричность
- Полнота протекания реакции (β ≥ 10⁸)
- Реакции комплексообразования должны протекать быстро
- КТТ должна фиксироваться отчетливо

Классификация

- Меркуриметрия
- Фторометрия
- Цианометрия
- Комплексонометрия


Комплексоны

Комплексон I, нитрилотриуксусная кислота (НТК)

CH₂COOH
N—CH₂COOH
CH₂COOH

$$H_3Y \longrightarrow 3H^+ + Y^{3-}$$

Комплексон II, этилендиаминотетрауксусная кислота дигидрат (ЭДТУК)

Комплексон III, трилон Б, динатрия эдетат дигидрат $Na_2H_2Y \cdot 2H_2O$ (ЭДТА)

Комплексон IV, о-диаминциклогексантетрауксусная кислота

CH₂COOH

CH₂COOH

$$H_4Y \Longrightarrow 4H^+ + Y^{4-}$$

CH₂COOH

CH₂COOH

ЭДТУК - слабая 4-х основная кислота

$$H_4Y \square H^+ + H_3Y^-$$

$$pKa_1 = 2.0$$

$$H_3Y^- \square H^+ + H_2Y^{2-}$$

$$pKa_2 = 2,67$$

$$H_2Y^{2-} \square H^+ + HY^{3-}$$

$$pKa_3 = 6,16$$

$$HY^{3-} \square H^{+} + Y^{4-}$$

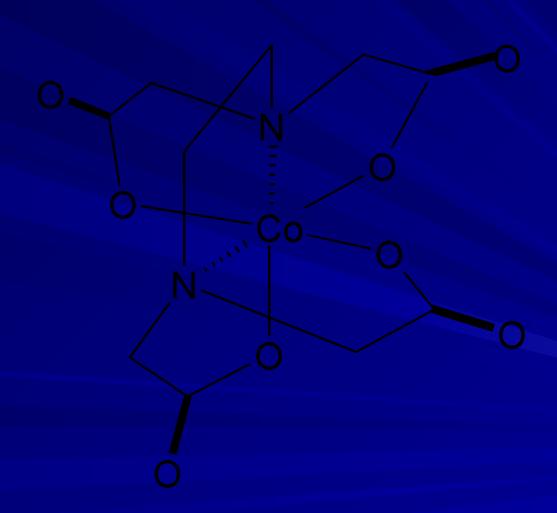
$$pKa_4 = 10,26$$

При pH<1,6 она протонируется: ионы водорода присоединяются к молекуле ЭДТУК, образуя ионы H_5Y^+ , H_6Y^{2+} .

При рН 3-6 доминирующая форма H_2Y^{2-}

6 - 10

_ " _


HY³-

>10

_ " _

Y⁴⁻

Структура комплекса, образованного ионом кобальта (Co³⁺) и анионом ЭДТУК

комплексы состава МҮ⁽ⁿ⁻⁴⁾

В умеренно кислых растворах:

$$M^{n+} + H_2 Y^{2-} \square [MY]^{(n-4)} + 2 H^+$$

В нейтральных и умеренно щелочных растворах:

$$M^{n+} + HY^{3-} \square [MY]^{(n-4)} + H^{+}$$

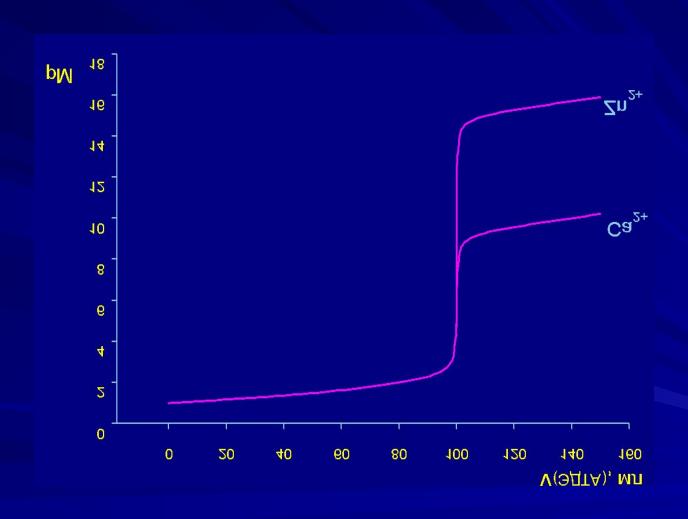
Наиболее устойчивыми являются комплексы с ЭДТА:

Bi³⁺ (lg
$$\beta$$
=27,9), Fe³⁺ (lg β =25,1), Cr³⁺ (lg β =23,0),

т.е. $\lg \beta > 20$, их определяют в кислой среде.

Менее устойчивые комплексы с ЭДТА образуют ионы

 S^2 – элементов: Ba^{2+} ($Ig \beta=7,8$), Mg^{2+} ($Ig \beta=8,7$), Ca^{2+} ($Ig \beta=10,7$),


т.е. Ig β < 10. Их можно определять только в щелочной среде.

Первичные стандарты:

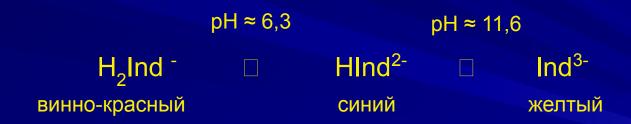
металлический цинк, алюминий,

магний, ZnSO₄·7H₂O, MgSO₄·7H₂O.

Кривая комплексиметрического титрования катионов Ca²⁺ и Zn²⁺ раствором ЭДТА при рН = 14

Принцип действия металлохромных индикаторов

$$M^{2+}$$
 + H_2 Ind \square [MInd] + $2 H^+$ цвет 1 цвет 2


$$M^{2+} + H_2 Y^{2-} \square [MY]^{2-} + 2 H^+$$

[MInd] +
$$H_2Y^{2-}$$
 \square [MY]²⁻ + H_2 Ind цвет 2

$$\beta_{[MInd]} < \beta_{[MY]}^{2}$$

$$\frac{\beta_{[MY]^{2^{-}}}}{\beta_{[MInd]}} \approx 10 - 100$$

Эриохром черный Т

$$H_2O$$
 OH_2 OH_2 OH_2 OH_3 OH_4 OH_4 OH_4 OH_5 OH_5

Применяют для определения Ba²⁺, Zn²⁺, Mn²⁺, Mg²⁺, Sr²⁺, Cd²⁺.

Ксиленоловый оранжевый

$$(HOOCCH_2)_2N - CH_2$$

$$HO$$

$$H_3C$$

$$CH_2^- N(CH_2COOH)_2$$

$$CH_3$$

$$SO_3H$$

$$H_6Ind$$

Применяют для определения:

при pH =
$$1,5-3$$
 - Fe^3 +, Bi^{3+} ;

при pH = 5-7 -
$$Zn^{2+}$$
, Cd^{2+} , Cu^{2+} , Hg^{2+} , Co^{2+} , Ni^{2+} , Pb^{2+}

Мурексид (NH₄H₄Ind)

$$H_2O$$
 H_2O
 H_2O
 H_2O

Применяют при комплексонометрическом определении

$$Cu^{2+}$$
, Co^{2+} , Ni^{2+} , Zn^{2+} (pH = 8 – 9); Ca^{2+} (pH > 12)

Меркуриметрия

Для определения анионов Cl⁻, Br⁻, I⁻, CN⁻, SCN⁻.

a)
$$Hg^{2+} + 2 Cl^{-} \square HgCl_{2}$$

б)
$$Hg^{2+} + 4 I^{-} \square [HgI_{4}]^{2-}$$
 В ТЭ появляется красный осадок $Hg^{2+} + [HgI_{4}]^{2-} \square 2 HgI_{2} \square$

в)
$$Hg^{2+} + 2 SCN^- \square Hg(SCN)_2$$

Индикаторы

• Нитропруссид натрия:

$$Hg^{2+} + [Fe(CN)_5NO]^{2-} + 2 H_2O \square Hg[Fe(CN)_5NO] \cdot 2 H_2O\square$$

• Дифенилкарбазон:

$$O = C$$
 $N = N - C_6H_5$
 $+ Hg^{2+} - O = C$
 $N = N$
 $Hg/_2 + H^+$
 C_6H_5
 C_6H_5