VA группа

(N MP)

Свойства простых веществ

	N	P	As	Sb	Bi
Т.пл. (°С)	-210	44	615(субл)	630	272
Т.кип. (°C)	-195.8	257	_	1634	1564
Аллотропия	только N ₂	белый красный черный	серый (крист) желтый (аморф)	серая (крист) желтая (аморф)	серебристо- белый металл

ФОСФОР

Реакции молекулярного азота

1. С металлами при нагревании

$$3Mg + N_2 = Mg_3N_2$$
 450°C
 $2Ti + N_2 = 2TiN$ 800°C
 $2AI + N_2 = 2AIN$ 900°C

2. С H_2 на катализаторе

$$N_2 + 3H_2 = 2NH_3$$
 (процесс Боша-Габера)

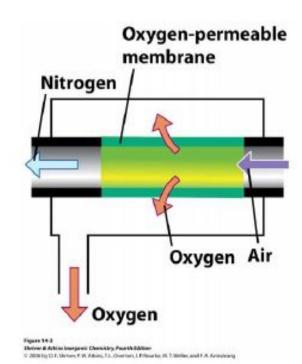
3. С O_2 в электрическом разряде

$$N_2 + O_2 = 2NO$$

Получение и применение азота

- 1. Азот составляет 78% воздуха (по объему) или 76% (по массе)
- 2. Промышленное получение азота:

фракционирование воздуха или


разделение воздуха на мембранах

3. Получение азота в лаборатории:

$$2NaN_3 = 2Na + 3N_2$$
 (to)

$$NH_4NO_2 = N_2 + 2H_2O$$
 (to)

- 4. Основное применение:
 - создание инертной атмосферы
 - синтез аммиака
 - охлаждение

Оксиды азота

	N_2O	NO	N_2O_3	NO_2	N_2O_4	N_2O_5
C.O.	+1	+2	+3	+4	+4	+5
Т.пл., °С	-90.7	-163.7	-101	_	-11	32.4 (субл)
Т.кип.,∘С	-88.7	-151.8	3.5 (разл)	_	21.2	_
Цвет	бесцв	бесцв	синий	бурый	бесцв	бесцв

1. Закись азота, оксид азота (I) N_2O $NH_4NO_3 = N_2O + 2H_2O$ $NH_2OH + HNO_2 = N_2O + 2H_2O$ $C + 2N_2O = CO_2 + 2N_2$

«веселящий газ» 250°С Получение

поддерживает горение

2. NO не растворяется в воде, не реагирует с кислотами и щелочами

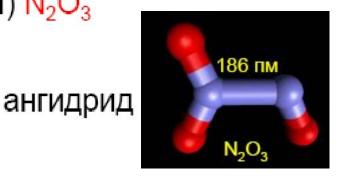
$$2NO + O_2 = 2NO_2$$

2NO + Cl₂ = 2NOCI

NO – слабый окислитель, слабый восстановитель

$$2NO + 3Sn + 8HCI = 3SnCI_2 + 2[NH_3OH]CI$$

 $2NO + K_2Cr_2O_7 + 4H_2SO_4 = 2HNO_3 + Cr_2(SO_4)_3 + K_2SO_4 + 3H_2O$


Азотистый ангидрид, оксид азота (III) № О₃

$$NO + NO_2 \Leftrightarrow N_2O_3$$

 $N_2O_3 + H_2O \Leftrightarrow 2HNO_2$

 $2NO_2 \stackrel{-11^{\circ}C}{\longleftarrow} N_2O_4$

140°C

5. Оксиды азота (IV) NO_2 и N_2O_4

$$\Delta_{\rm r}{\rm H^0}_{298}$$
 = -55 кДж/моль

бурый
$$140^{\circ}\text{C}$$
 бесцветный $2\text{NO}_2 + \text{H}_2\text{O} = \text{HNO}_2 + \text{HNO}_3$ $2\text{C} + 2\text{NO}_2 = 2\text{CO}_2 + \text{N}_2$

поддерживает горение

Азотный ангидрид, оксид азота (V) N_2O_5

$$2HNO_3 + P_2O_5 = N_2O_5 + 2HPO_3$$

 $N_2O_5 + I_2 = I_2O_5 + N_2$

получение окислитель

взрывоопасен!

Кислородные кислоты азота

 HNO_2

HNO₃

азотистая

азотная

N+3

N+5

существует только в растворе бесцветная жидкость

$$pK_a = 3.37$$

$$pK_a = -1.64$$

Кислородные кислоты азота


 $H_2N_2O_2$

азотноватистая

N+1

Бесцветное твердое вещество

$$pKa_1 = 8.1$$

 $pKa_2 = 11$

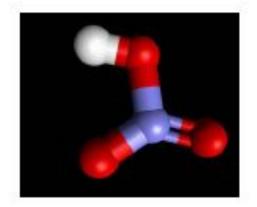
HNO₂

азотистая

N+3

существует только в растворе

$$pK_a = 3.37$$


HNO₃

азотная

N+5

бесцветная жидкость

$$pK_a = -1.64$$

Кислородные кислоты азота

Свойства H₂N₂O₂

$$H_2N_2O_2 = H_2O + N_2O$$

неустойчива

Получение HNО₂

$$Ba(NO2)2 + H2SO4 = 2HNO2 + BaSO4 \downarrow$$

$$N2O3 + H2O = 2HNO2$$

$$3HNO_2 = 2NO + HNO_3 + H_2O$$

медленно

Red/ох свойства HNO₂

$$HNO_2 + Br_2 + H_2O = 2HBr + HNO_3$$

$$E^{0}(NO_{2}/N_{2}O) = +0.15 B$$

$$E^{0}(NO_{2}^{-}/N_{2}O) = +0.15 B$$
 $E^{0}(HNO_{2}/N_{2}O) = +1.30 B$

$$HNO_2 + FeCl_2 + HCl = FeCl_3 + NO + H_2O$$

$$2HNO_2 + 2SnCl_2 + 8HCl = 3H_2O + 2H_2SnCl_6 + N_2O$$

$$NaNO_2 + 3Zn + 5NaOH + 5H_2O = 3Na_2[Zn(OH)_4] + NH_3$$

Азотная кислота

Безводная HNO₃ медленно разлагается при н.у.

HNO₃ реагирует почти со всеми металлами

(кроме Au, Ta, Hf, Re, Pt, Os, Ir, Rh, Ru)
8Fe +
$$30HNO_3$$
 (p) = $8Fe(NO_3)_3 + 3NH_4NO_3 + 9H_2O$
Sn + $4HNO_3$ (к) = $SnO_2 + 4NO_2 + 2H_2O$

Безводная HNO₃ реагирует с неметаллами

(S, Se, Te, I, ...)

$$6S + 6HNO_3 (6/B) = H_2SO_4 + 6NO_2 + 2H_2O$$

Концентрированная HNO₃ пассивирует некоторые металлы
 (Al, Cr, Fe, ...)

Азотная кислота

Получение HNО₃

$$4NH_3 + 5O_2 = 4NO + 6H_2O$$
 p, t^o , $\kappa a \tau$.
 $2NO + O_2 = 2NO_2$ $(2NO_2 \Leftrightarrow N_2O_4)$
 $2NO_2 + H_2O = HNO_3 + HNO_2$
 $2HNO_2 = NO + NO_2 + H_2O$
 $3NO_2 + H_2O = 2HNO_3 + NO$

6. Нитраты

растворимы в воде, разлагаются при нагревании

 MnO_{2} (TB) + 2KOH (π) + KNO₃ (π) = $K_{2}MnO_{4}$ + KNO₂ + $H_{2}O$

$$2{\rm KNO_3} = 2{\rm KNO_2} + {\rm O_2}$$
 to $2{\rm Cd}({\rm NO_3})_2 = 2{\rm CdO} + 2{\rm NO_2} + {\rm O_2}$ $2{\rm AgNO_3} = 2{\rm Ag} + 2{\rm NO_2} + {\rm O_2}$ окислители в кислой среде и в расплаве

ФОСФОР

Фосфор был открыт впервые гамбургским алхимиком Брандом в 1669 году. Сначала этот элемент называли «холодным пламенем», а затем дали название «фосфор», что означает» светоносный».

$$P_4 + 5O_2 = 2P_2O_5$$

Аллотропия фосфора

Элементы могут существовать в более, чем одной форме, которые называются <mark>аллотропными модификациями</mark> и имеют разные физические и химические свойства

d(P-P) = 219-223 пм Фосфор Гитторфа (фиолетовый) Сложная слоистая структура: Р₇ и Р₈, «сшитые» в слои

Красный фосфор неупорядоченный вариант фосфора Гитторфа

> Фосфор высокого давления (кубический)

Свойства аллотропов фосфора

овологва аллогропов фосфора				
Белый фосфор	Красный фосфор	Черный фосфор		
Белое воскообразное вещество	красное вещество	черные кристаллы полупроводник		
d=1.83 г/см ³ очень мягкий	d≈2.3 г/см ³	d=2.69 г/см ³ твердый, хрупкий		
Летуч, люминофор, самовозгорается при 25°C	не летуч, само- возгорается при 260°C	не летуч, не горит		
Растворим в CS_2 , PCI_3 , C_6H_6 , $T\Gamma\Phi$, SO_2	растворим в Hg	растворитель неизвестен		
Реагирует с ОН ⁻ , легко окисляется	окисляется сильными окислителями	окисляется сильными окислителями		
Очень токсичен	мало токсичен	нетоксичен		
Существует в	возгоняется с	стабилен		

образованием Р

термодинамически

виде Р4

Свойства аллотропов фосфора

Р₄ – термодинамически стандартное состояние по определению

2. Белый фосфор очень реакционноспособен

$$P_4 + 5O_2 = 2P_2O_5$$
 самовозгорание $P_4 + 3NaOH + 3H_2O = PH_3 + 3NaH_2PO_2$ $P_4 + 20HNO_3$ (конц) = $4H_3PO_4 + 20NO_2 + 4H_2O$ в растворе ДМФ

Красный фосфор окисляется в разных условиях.

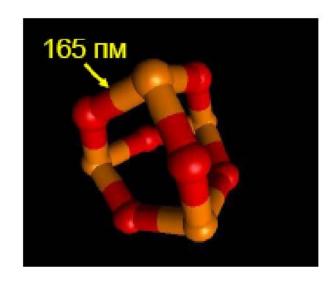
$$2P + 5Cl_2 = 2PCl_5$$
 (+PCl₃)
 $2P + 5CuSO_4 + 8H_2O = 5Cu + 2H_3PO_4 + 5H_2SO_4$
 $6P + 5KClO_3 = 3P_2O_5 + 5KCl$ механоактивация

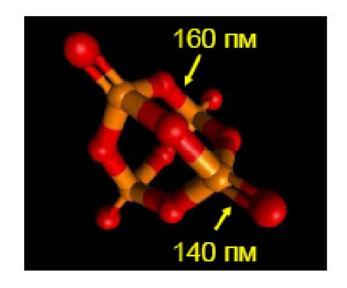
Оксиды P, As, Sb, Bi

P_2O_3	As ₂ O ₃	Sb ₂ O ₃	Bi ₂ O ₃
т.пл. 24°С	т.субл. 205°С	т.пл. 656°С	т.пл. 820°С
т.кип. 155°С			
бесцветный	бесцветный	бесцветный	желтый
кислотный	амфотерный	амфотерный	основный
P ₂ O ₅	As ₂ O ₅	Sb ₂ O ₅	Bi ₂ O ₅
т.субл. 360°C	т.разл. 250°С	т.разл. 920°С	т.разл. ∼100°С
бесцветный	бесцветный	бесцветный	коричневый
кислотный	кислотный	кислотный	кислотный
Также известны:			
	P_4O_7 (3P ₂ O ₃	P_2O_5	

 P_4O_9 $(P_2O_3 \cdot 3P_2O_5)$

 P_4O_8 ($P_2O_3 \cdot P_2O_5$) Sb_2O_4 ($Sb_2O_3 \cdot Sb_2O_5$)


Оксиды фосфора


$$4P + 3O_2 = 2P_2O_3$$
 to $P_2O_3 + 3H_2O = 2H_3PO_3$ ангидрид

2. P₂O₅

$$4P + 5O_2 = 2P_2O_5$$

 $P_2O_5 + 3H_2O = 2H_3PO_4$ ангидрид

сильнейшее водуотнимающее средство

Оксид фосфора (III)

<u>Строение молекулы</u>

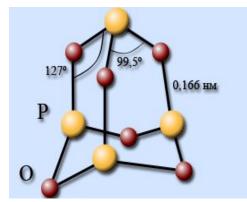
В основе структуры P_4O_6 лежит тетраэдр P_4 , в котором между каждой парой атомов фосфора находится атом кислорода. Атомы кислорода находятся вне прямых, соединяющих атомы фосфора, так что структура P_4O_6 составлена из четырех шестичленных циклов P_3O_3 , каждый из которых имеет форму «кресла».

Физические свойства

Оксид фосфора (III) – белый рыхлый кристаллический порошок с неприятным запахом, легко возгоняется, температура плавления 24 °C, температура кипения 174 °C. Хорошо растворимый в органических растворителях. Очень ядовит.

Химические свойства

1. Взаимодействие с кислородом


При температуре 20-50 °C окисляется кислородом воздуха:

$$P_4O_6 + 2O_2 = P_4O_{10}$$

2. Взаимодействие с водой

Оксид фосфора (III) – фосфористый ангидрид, при взаимодействии с холодной водой образует фосфористую кислоту:

$$P_4O_6 + 6H_2O = 4H_3PO_3$$
.

3. Свойства кислотного оксида

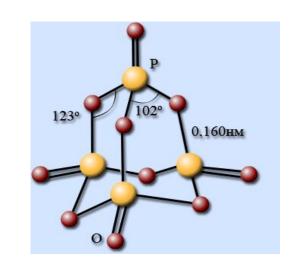
Типичный кислотный оксид: $4CaO + P_4O_6 + 2H_2O = 4CaHPO_3$, $4Ca(OH)_2 + P_4O_6 = 4CaHPO_3 + 2H_2O$.

4. Восстановительные свойства

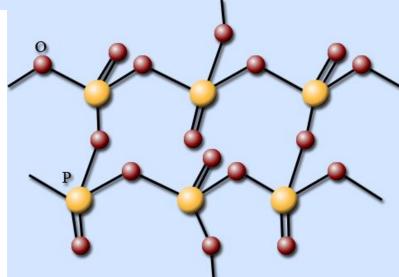
Обладает восстановительными свойствами, восстанавливает малоактивные металлы из растворов их соединений:

$$4HgCl_2 + P_4O_6 + 10H_2O = 4H_3PO_4 + 4Hg + 8HCI.$$

<u>Получение</u>


Образуется при горении фосфора в недостатке кислорода:

$$4P + 3O_2 = P_4O_6$$


Оксид фосфора (V)

Строение молекулы

Молекулярная модификация оксида фосфора (V) построена из молекул P_4O_{10} , представляющих собой четыре тетраэдра, соединенных друг с другом общими вершинами. Строение молекулы P_4O_{10} напоминает структуру P_4O_6 , только к каждому атому фосфора присоединяется по атому кислорода, связанного с фосфором двойной связью.

При плавлении некоторые связи в циклических молекулах P_4O_{10} разрываются, и они превращаются в полимер, состоящий из тетраэдров PO_4 , объединенных в слои.

Физические свойства

Оксид фосфора (V) – белый рассыпчатый гигроскопичный порошок, рыхлый до пушистости. Расплывается на воздухе, возгоняется при 360 °C.

Химические свойства

1. Взаимодействие с водой

Оксид фосфора (V) чрезвычайно жадно присоединяет воду, реакция сопровождается выделением большого количества тепла. При этом образуется смесь фосфорных кислот различного состава, которые при кипячении переходят в ортофосфорную кислоту:

$$P_4O_{10}$$
 + $2H_2O$ = $4HPO_3$ (метафосфорная кислота), P_4O_{10} + $4H_2O$ = $2H_4P_2O_7$ (пирофосфорная кислота), P_4O_{10} + $6H_2O$ = $4H_3PO_4$ (ортофосфорная кислота).

2. Свойства кислотного оксида

Типичный кислотный оксид:

$$6CaO + P_4O_{10} = 2Ca_3(PO_4)_2$$
,
 $6Ca(OH)_2 + P_4O_{10} = 2Ca_3(PO_4)_2 + 6H_2O$.

3. Водоотнимающее свойство

Эффективное водоотнимающее средство, способен превращать азотную и серную кислоты в оксиды:

$$2HNO_3 + P_2O_5 = 2HPO_3 + N_2O_5;$$

 $H_2SO_4 + P_2O_5 = 2HPO_3 + SO_3.$

Получение

Образуется при гидролизе трихлорида фосфора:

$$PCI_3 + 3H_2O = H_3PO_3 + 3HCI.$$

КИСЛОТЫ ФОСФОРА

Кислородные кислоты фосфора

Фосфор образует ряд кислот, где валентность фосфора равна 5, а степень окисления может быть +1, +3, +5.

Кислородные кислоты фосфора

	-		
Формула	H_3PO_2	H ₃ PO ₃	H ₃ PO ₄
Степень окисл. фосфора	+1	+3	+5
Осно вность	1	2	3
Название кислоты	фосфорноватистая	фосфористая	(орто)фосфорная
Название средней соли	гипофосфит	фосфит	фосфат

Фосфор по числу оксокислот превосходит все другие элементы Периодической системы. Некоторые из них имеют молекулярное строение, другие являются полимерами. Во всех кислотах атом фосфора имеет координационное число четыре и находится в центре тетраэдра, образованного атомами кислорода и водорода. В кислотах со связью Р — Н фосфор проявляет низшие степени окисления. Кислоты фосфора (V) состоят из одного или нескольких тетраэдров РО4, соединенных друг с другом в цепи и кольца разного размера.

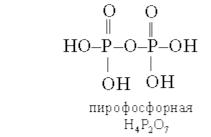
Кислородные кислоты фосфора

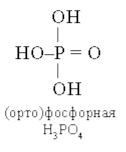
H₃PO₂ с.о. +1 фосфорноватистая гипофосфиты

> H₄P₂O₆ с.о. +4 фосфорноватая фосфонаты

Н₄Р₂О₇ с.о. +5 пирофосфорная пирофосфаты

(HPO₃)_n [n = 3,4] c.o. +5 метафосфорная полифосфаты H₃PO₃ с.о. +3 фосфористая фосфиты

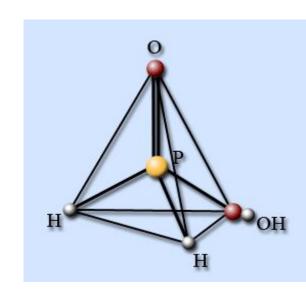

H₃PO₄ с.о. +5 фосфорная фосфаты


H₅P₃O₁₀ с.о. +5 трифосфорная трифосфаты

Кислота	Степень окисления фосфора	Структурная формула
Фосфорноватистая (гипофосфористая) Н ₂ РО ₂	+1	H-P H OH
Фосфористая Н ₃ РО ₃	+3	но <u>-</u> Р н он
Фосфорноватая (гипофосфорная) Н ₄ Р ₂ О ₆	+4	но Л ОН но Р-Р ОН
Ортофосфорная H ₃ PO ₄	+5	но
Пирофосфорная Н ₄ Р ₂ О ₇	+5	но Р Р Он
етраметафосфорная (НРС3)4	+5	но о он
олиметафосфорная (НРО3),	+5	HO HO HO P

$$HO-P = O$$
метафосфористая
 HPO_2
 $HO-P-O-P-OH$
 $OH OH$
пирофосфористая
 $H_4P_2O_5$
 OH
 $HO-P = O$
 H
 $Opto)$ фосфористая
 H_3PO_3

$$\mathbf{O}$$
 \parallel $\mathbf{HO-P}=\mathbf{O}$ метафосфорная $\mathbf{HPO_3}$



Фосфорноватистая кислота Н₃РО₂

Степень окисления фосфора равна +1.

Строение молекулы

Молекула имеет форму тетраэдра с атомом фосфора в центре, в вершинах тетраэдра находятся два атома водорода, атом кислорода и гидроксогруппа. Поэтому фосфористая кислота, несмотря на наличие трех атомов водорода, является одноосновной.

Физические свойства

Фосфорноватистая кислота — это белые кристаллы, хорошо растворимые в воде и в органических

<u> Химиические свойства</u>

1. Одноосновная кислота средней силы. Очень сильный восстановитель:

$$5H_3PO_2 + 4KMnO_4 + 6H_2SO_4 = 5H_3PO_4 + 4MnSO_4 + 2K_2SO_4 + 6H_2O_4$$

2. При температуре около 50 °C разлагается:

$$3H_3PO_2 = PH_3 + 2H_3PO_3$$
.

Соли – гипофосфиты.

Практически все хорошо растворимы в воде, соли переходных металлов мгновенно разлагаются.

<u>Получение</u>

При диспропорционировании белого фосфора в концентрированной щелочи образуется гипофосфит — соль фосфорноватистой кислоты, раствор кислоты легко получается действием серной кислоты на гипофосфит:

$$2P_4 + 3Ba(OH)_2 + 6H_2O = PH_3 + 3Ba(H_2PO_2)_2$$

 $Ba(H_2PO_2)_2 + H_2SO_4 = 2H_3PO_2 + BaSO_4$

Фосфористая кислота H₃PO₃

Степень окисления фосфора равна +3.

Строение молекулы

Молекула имеет форму тетраэдра с атомом фосфора в центре, в вершинах тетраэдра находятся атом водорода, атом кислорода и две гидроксогруппы. Поэтому фосфористая кислота, несмотря на наличие трех атомов водорода, является двухосновной.

Физические свойства

Фосфористая кислота — это бесцветные кристаллы, хорошо растворимые в воде и спирте, температура плавления 74 °C, температура разложения 197 °C.

$$Ag_2HPO_3 = 2Ag + HPO_3$$
.

Химические свойства

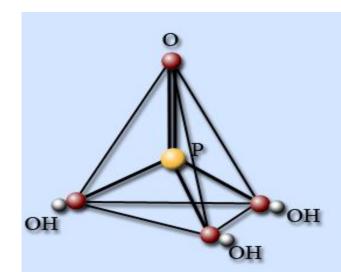
- 1. Двухосновная кислота средней силы.
- 2.Является хорошим восстановителем, хотя и менее сильным, чем фосфорноватистая кислота, она также обесцвечивает раствор перманганата калия: $5H_3PO_3 + 2KMnO_4 + 3H_2SO_4 = 5H_3PO_4 + 2MnSO_4 + K_2SO_4 + 3H_2O$.
 - 3. При нагревании до 200 °C разлагается: $4H_3PO_3 = PH_3 + 3H_3PO_4$.

Соли – фосфиты и гидрофосфиты.

Практически все хорошо растворимы в воде, соли переходных металлов разлагаются: при незначительном нагревании:

Метафосфорная кислота НРО,

Нустойчива и в чистом виде не выделена, так же как не выделены из растворов её соли. Существует в виде полимеров. Относится к сильным кислотам, ей не свойственны окислительные и восстановительные свойства.


Ортофосфорная кислота Н₃РО₄ Среди оксокислот фосфора наибольшее значение имеет **ортофосфорная**

Среди оксокислот фосфора наибольшее значение имеет *ортофосфорная* кислота НЗРО4, она является наиболее устойчивой из всех кислот фосфора.

Строение молекулы

В газовой фазе молекула имеет форму тетраэдра с атомом фосфора в центре, в вершинах тетраэдра находятся атом кислорода и три гидроксогруппы. Поэтому фосфорная кислота является трехосновной.

В кристаллическом виде она построена из молекул PO(OH)₃, связанных водородными связями в двухмерные слои. Твердую фосфорную кислоту получить очень сложно: благодаря большому числу водородных связей концентрирование растворов приводит к образованию вязких сиропов, которые кристаллизуются лишь со временем.

Физические свойства

Бесцветные гигроскопичные кристаллы моноклинной сингонии, плотность 1,88 г/см3, температура плавления 42,5 °C. Расплывается на воздухе, смешивается с водой в любых соотношениях. Не ядовита.

Химические свойства

При комнатной температуре довольно инертна, при нагревании проявляет свойства кислот, относится к кислотам средней силы.

1. Диссоциация в водном растворе:

$$H_3PO_4 = H_2PO_4^{-} + H^+$$

 $H_2PO_4^{-} = HPO_4^{-2} + H^+$
 $HPO_4^{-2} = PO_4^{-3} + H^+$

Суммарное уравнение:

$$H_3PO_4 = PO_4^{3-} + 3H^+$$
.

2. Свойства кислоты

Реагирует с металлами, стоящими в ряду напряжений металлов до водорода:

$$3Zn + 2H_3PO_4 = Zn_3(PO_4)_2 + 3H_2$$

С оксидами металлов:

$$3CaO + 2H_3PO_4 = Ca_3(PO_4)_2 + 3H_2O.$$

С основаниями:

$$3Ca(OH)_2 + 2H_3PO_4 = Ca_3(PO_4)_2 + 6H2O$$

 $Ca(OH)_2 + H_3PO_4 = CaHPO_4 + 2H_2O$
 $Ca(OH)_2 + 2H_3PO_4 = Ca(H_2PO_4)_2 + 2H_2O$.

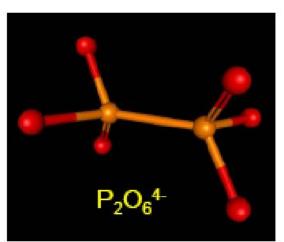
Не проявляет ни окислительных, ни восстановительных свойств.

Получение

1. Термический способ получения фосфорной кислоты основан на окислении элементарного фосфора в избытке воздуха с последующей гидратацией и образующегося оксида фосфора (V) и конденсацией фосфорной кислоты:

$$4P + 5O_2 = P_4O_{10}$$
 $nP_4O_{10} + 2nH_2O = 4(HPO_3)n$ при 700 °C, $4(HPO_3)n + 2nH_2O = 2nH_4P_2O_7$ при 450 °C, $2nH_4P_2O_7 + 2nH_2O = 4nH_3PO_4$ ниже 230 °C.

Суммарное уравнение:


$$P_4O_{10} + 6H_2O = 4H_3PO_4$$
.

2. Также ортофосфорную кислоту получают при переработке апатитов:

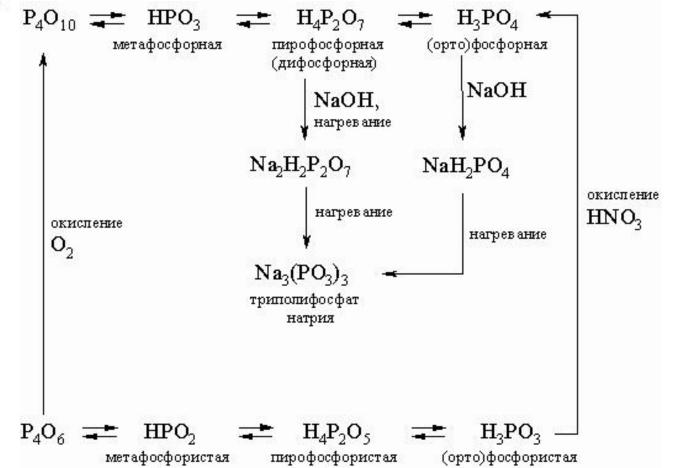

$$Ca_5(PO_4)_3F + 5H_2SO_4 + 10H_2O = 5CaSO_4 \cdot 2H_2O + 3H_3PO_4 + HF.$$

Кислородные кислоты фосфора

 $H_4P_2O_6$



H₄P₂O₇



Увеличение силы кислот

 $pKa_1 = 2.2$ $pKa_2 = 2.8$ $pKa_3 = 7.0$ $pKa_4 = 10.0$ $pKa_1 = 0.85$ $pKa_2 = 1.49$ $pKa_3 = 5.77$ $pKa_4 = 8.32$

Подобные структуры являются фрагментами АТФ. Высвобождение и аккумуляция энергии в АТФ обеспечивается за счет обратимого гидролиза трифосфата до дифосфата и наоборот.

