Карбонильные соединения (альдегиды и кетоны)

Методы получения

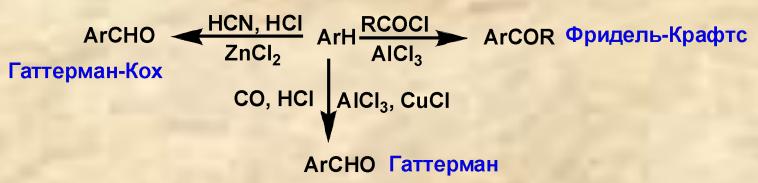
1. Из углеводородов

алкилбензолы

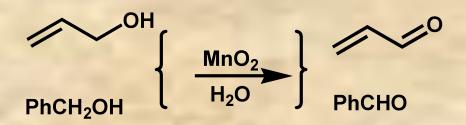
PhCHO
$$\frac{\text{CrO}_2\text{Cl}_2}{\text{R} = \text{H}}$$
 PhCH₂R $\frac{\text{O}_2}{\text{Co}^{2+}}$ PhCOR PhCOR $\frac{\text{O}_2}{\text{Co}^{2+}}$ PhCOR $\frac{\text{O}_2}{\text{Co}^{2+}}$ PhCOR PhCOR $\frac{\text{O}_2}{\text{Co}^{2+}}$ PhCOR $\frac{\text$

алкены

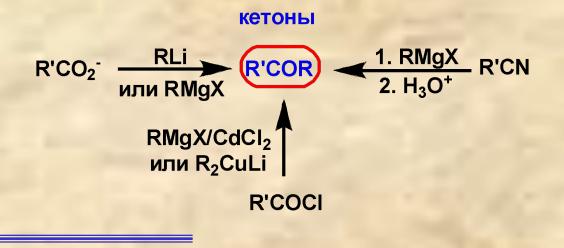
$$R_1COR_1 + RCHO$$


О SO_4 , H_2O_2
 R_1
 R_1
 R_1
 R_1
 R_2
 R_3
 R_4
 R_4

алкины


R 1. BHR₂
2. H₂O₂, HO R
$$=$$

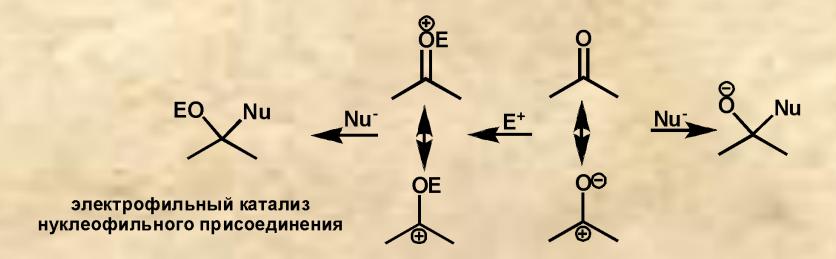
Kyyepob


Ароматическое электрофильное замещение

2. Из спиртов

3. Из производных карбоновых кислот

альдегиды


Пиролиз солей карбоновых кислот

$$(CH_2)_n$$
 Ca
 $CaCO_3$
 $(CH_2)_n$
 $CaCO_3$
 $CaCO_3$
 $CaCO_3$
 $CaCO_3$
 $CaCO_3$

$$RCO_2H + HCO_2H \xrightarrow{ThO_2} RCHO + H_2O + CO_2$$

Свойства карбонильных соединений

1. Полярность связи С=О - реакции нуклеофильного присоединения

Общая схема реакции присоединения-отщепления

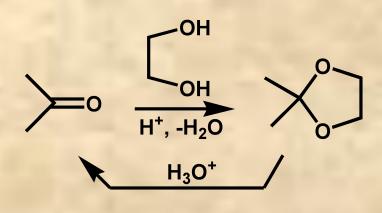
электрофильный катализ

Вода, спирты

Реакция гидратации обратима, равновесие, как правило, смещено влево. Альдегиды в большей степени находятся в гидратной форме (атом водорода является акцептором по сравнению с алкилом, стерика – переход от sp² к sp³-гибридному атому), акцепторные заместители способствуют образованию гидратной формы (увеличение положительного заряда на карбонильном атоме углерода).

$$CI_3C$$
 H_2O
 CI_3C
 H
 OH
 OH
 OH
 OH
 OH
 OH

хлоральгидрат (антисептик для КРС)


$$CH_2O \xrightarrow{\pm H_2O} HO OH \xrightarrow{CH_2O} HO OOH \xrightarrow{+ + +} HO OO OH \xrightarrow{- + +} HO OOH OH$$
 параформ паральдегид

щелочная среда

кислая среда

Реакция обратима, для протекания слева направо необходимо удаление воды, справа налево реакция идет в водном растворе (избыток воды)

Ацетальная группа как защитная:

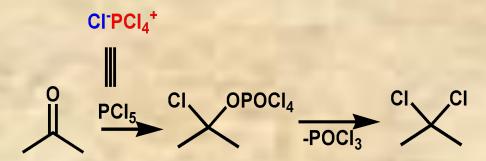
$$\begin{array}{c|c}
OH \\
OH \\
H^+, -H_2O
\end{array}$$

$$\begin{array}{c}
OH \\
HO^-
\end{array}$$

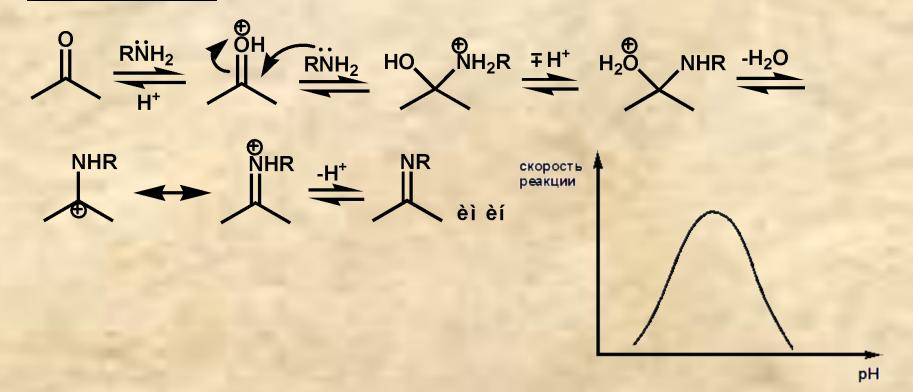
$$\begin{array}{c}
H_3O^+ \\
HO^-
\end{array}$$

защита устойчива в щелочной среде (к действию нуклеофилов)

Аналогично:

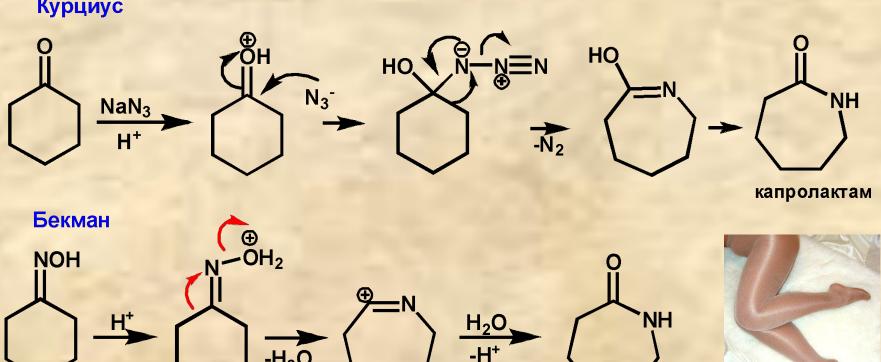

Восстановление карбонильных соединений

NaHSO₃ HO SO₃Na
$$R'$$
 sp^3 R


Бисульфитное производное - образуют альдегиды и пространственно незатрудненные кетоны.

Растворимо в воде и может быть использовано для отделения альдегидов.

Галоген - нуклеофил



N-нуклеофилы

Перегруппировки азотистых производных карбонильных соединений

Курциус

Кижнер-Вольф

С-нуклеофилы

Фаворский

Металлоорганические соединения

Обычное протекание реакции - нуклеофильное присоединение

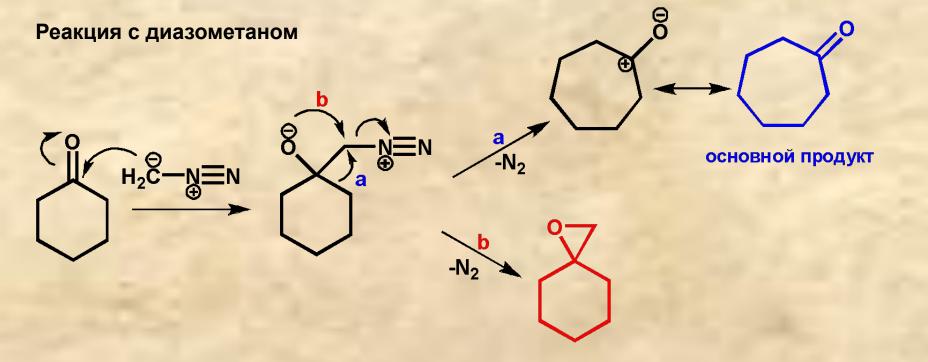
Побочные процессы:

1. енолизация протекает в случае объемных заместителей R и R'

$$\delta^ \delta^+$$
 $\delta^ \delta^+$ δ^+ $\delta^ \delta^+$ $\delta^ \delta^+$ δ^+ $\delta^ \delta^+$ δ^+ $\delta^ \delta^+$ δ^+ $\delta^ \delta^+$ $\delta^ \delta^+$ δ^+ $\delta^ \delta^+$ $\delta^ \delta^ \delta^+$ $\delta^ \delta^ \delta^+$ $\delta^ \delta^ \delta^+$ $\delta^ \delta^ \delta^-$

2. восстановление

протекает в случае объемных заместителей R

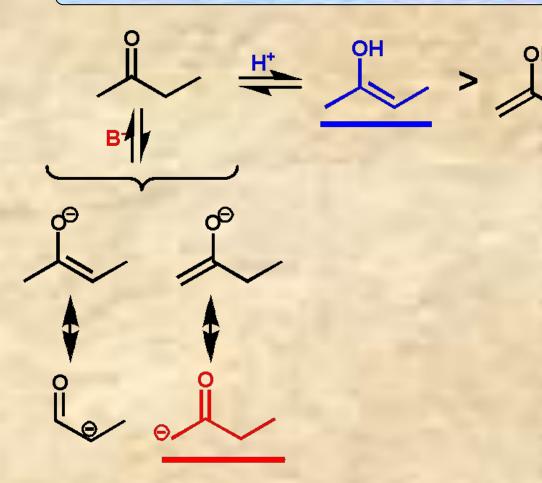

Виттиг

син-элиминирование

связь C=C возникает строго в том месте, где была связь C=O

например:

Синтез реагента Виттига

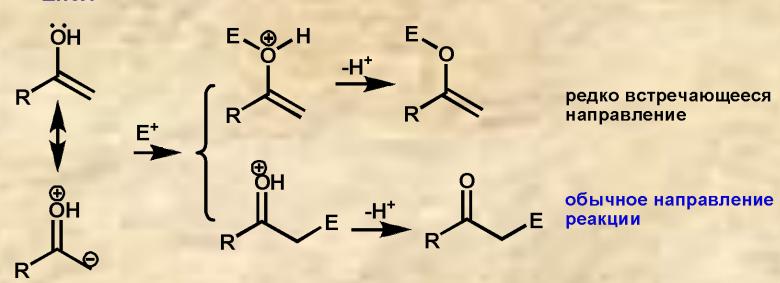


Кето-енольное таутомерное равновесие и связанные с ним реакции

$$R$$
 CH_3 H^+ R^+ R^+

енолят-анион

направление енолизации зависит от среды:



менее замещенный енолят-анион более устойчив (алкил - донор электронов) более замещенная кратная связь более выгодна

Енолизация обеспечивает возможность электрофильной атаки по альфа-углеродному атому!

Енол

Енолят-анион

карбонильное соединение - электрофил (частичный положительный заряд на карбонильном атоме углерода; енол - нуклеофил (пара электронов атома кислорода, находящаяся в сопряжении с кратной связью)

$$CH_3 \stackrel{H^+}{=} HO$$

$$CH_2 \stackrel{H^+}{=} CH_3 \stackrel{O}{\longrightarrow} CH_3 \stackrel{H^+}{\longrightarrow} CH_3 \stackrel{O}{\longrightarrow} CH_3 \stackrel{O}{\longrightarrow} CH_3 \stackrel{H^+}{\longrightarrow} CH_3 \stackrel{O}{\longrightarrow} CH_3 \stackrel{O$$

концентрация енола мала!

продукт альдольной конденсации (в данном случае не выделяется)

кротоновый альдегид (продукт кротоновой конденсации, образуется в этих условиях)

карбонильная метиленовая компонента компонента

РhСНО + Н[†] Рh карбонильная компонента компонента

Перекрестная конденсация – карбонильная и метиленовая компоненты различны. Конденсация – нуклеофильное присоединение по связи С=О, в котором альдегиды активнее кетонов (атом водорода – акцептор по сравнению с алкилом; карбонильная группа альдегида пространственно более доступна. При проведении перекрестной конденсации желательно, чтобы карбонильная компонента не могла выступать в качестве метиленовой (отсутствие атомов водорода у альфа-углеродного атома, как, например, у бензальдегида).

Для того, чтобы определить преимущественное направление конденсации, необходимо, чтобы карбонильная компонента обладала заметно большей активностью, а метиленовая компонента – заметно большей устойчивостью (учет влияние всех заместителей в исходной паре). В противном случае возможно образование всех четырех продуктов в сопоставимых количествах – реакция становится непрепаративной.

Получить продукт конденсации альдольного типа в кислой среде невозможно (следует дегидратация с образованием продукта кротоновой конденсации).

PhCHO +
$$\stackrel{O}{\longrightarrow}$$
 $\stackrel{HO^-}{\longrightarrow}$ $\stackrel{OH}{\longrightarrow}$ $\stackrel{OH}{\longrightarrow}$ $\stackrel{OH}{\longrightarrow}$ $\stackrel{Ph}{\longrightarrow}$ $\stackrel{OH}{\longrightarrow}$ $\stackrel{OH}{\longrightarrow}$

Реакция элиминирования происходит и в щелочной среде вследствие повышенной кислотности протона у альфа-углеродного атома карбонильной группы, с одной стороны, и возможности образования протяженной системы сопряжения, с другой.

Кневенагель

$$R$$
 о + X пиперидин, R X Y

X, Y - сильные акцепторы по мезомерному эффекту - COR, CO₂R, CN, NO₂ в качестве катализатора используется слабое (органическое) основание

Концентрация карбонильного соединения значительно превосходит концентрацию енола (енолят-аниона). Следовательно, в среде присутствует большое количество электрофила - неенолизованного карбонильного соединения, которое конкурирует с другими прибавляемыми электрофилами в случае их сопоставимой реакционной способности.

продукты самоконденсации

Галоидирование

Кислый катализ

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

при катализе кислотами реакция галоидирования карбонильных соединений является автокаталитической - протоны (галогеноводород) являются продутом реакции

Основный катализ

$$\frac{\mathsf{Br}_2}{\mathsf{HO}^-} \left[\begin{array}{c} \mathsf{Br}_2 \\ \mathsf{-Br}^- \end{array} \right]$$

$$+ \underbrace{\begin{array}{c} HO^{-} O \\ \\ Br_{3}C \end{array}} \xrightarrow{O \ominus} OH \underbrace{\begin{array}{c} O \\ \\ -CBr_{3} \end{array}} \xrightarrow{CO_{2}H}$$

реакция галоформного распада

Реакция нитрозирования

щелочная среда

Реакции окисления

Кетоны окисляются в жестких условиях:

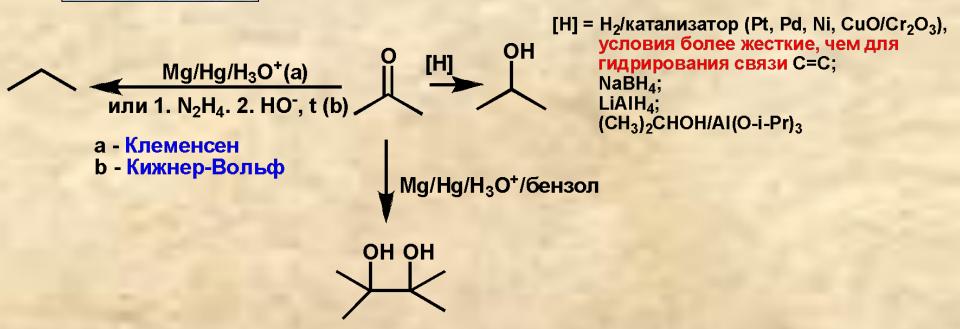
$$R_{1}H_{2}C \xrightarrow{O} CH_{2}R_{2} \xrightarrow{MnO_{4}^{-}, H^{+}} R_{1}CH_{2}CO_{2}H + R_{1}CO_{2}H + R_{2}CH_{2}CO_{2}H + R_{2}CO_{2}H$$

$$CO_{2}H \xrightarrow{CO_{2}H} HNO_{3} \text{ (pa36.)} \xrightarrow{(H_{2}C)_{4}} HNO_{3} \text{ (pa36.)} \xrightarrow{(D_{2}H)_{4}} HNO_{3} \text{ (pa36.)}$$

Альдегиды окисляются значительно легче:

RCHO
$$\stackrel{[O]}{\longrightarrow}$$
 RCO₂H
[O] = MnO₄⁻, Cr₂O₇²⁻, Br₂/HO⁻,
[Ag(NH₃)₂] OH - реактив Толленса (реакция серебряного зеркала)

Реакция Байера-Виллигера


$$R_1 = R_2 = R_2 = R_1 = R_2 = R_1 = R_2 = R_1 = R_2 = R_2 = R_1 = R_2 = R_2 = R_2 = R_1 = R_2 = R_2 = R_2 = R_2 = R_2 = R_2 = R_1 = R_2 = R_2$$

ряд подвижности мигрантов: H > Ar > алкил (третичный > вторичный > первичный) реакция происходит как синхроный процесс:

Радикальное окисление альдегидов («аутоокисление»)

$$RCHO \xrightarrow{O_2} R \xrightarrow{Q_2} R \xrightarrow{Q_2} R \xrightarrow{RCHO} R \xrightarrow{RCHO} 2 RCO_2 H$$
 последняя стадия - реакция Байера-Виллигера

Восстановление

Диспропорционирование

Реакция Канниццаро

RCHO
$$\stackrel{HO^-}{\longrightarrow}$$
 RCO₂H + RCH₂O⁻ \longrightarrow RCO₂⁻ + RCH₂OH

В реакцию вступают альдегиды, не содержашие атомов водорода у α-углеродного атома В противном случае происходят реакции конденсации альдольно-кротонового типа.

Перекрестная реакция Канниццаро:

формальдегид обычно выступает в роли восстановителя

Пример (синтез пентаэритрита):

альдольная конденсация, формальдегид карбонильная компонента

последняя стадия - перекрестная реакция Канниццаро (формальдегид - восстановитель)

Реакция Тищенко

$$RCHO \xrightarrow{AI(OR')_3} R \xrightarrow{O} R - алкил, арил$$
 Пример: $CH_3CHO \xrightarrow{---} OEt$ промышленный синтез этилацетата

Бензоиновая конденсация

$$R$$
 СN - основание R СN - акцептор

R = Ph - бензоин Реакция происходит только с альдегидами, не имеющими протонов у α-углеродного атома

β -Дикарбонильные соединения

Методы получения

1. Окисление альдолей

$$RCHO + R'COCH_3$$
 R'
 R'
 R'
 R'
 R'
 R'

2. Конденсация Кляйзена

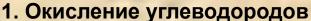
сложный эфир - менее активная карбонильная компонента и более слабая СН-кислота (образует менее устойчивый анион при действии основания), чем кетон. Этилат-анион - более сильное основание, чем гидроксид-анион, что обеспечивает сравнительно большую концентрацию енолят-аниона из кетона.

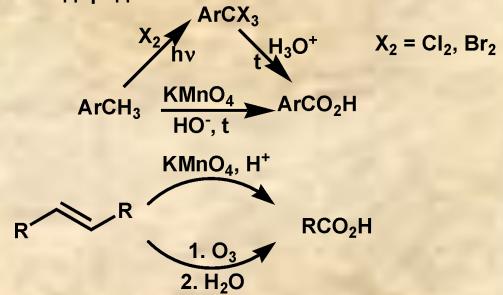
$$R' = R' = R' = R' - EtOH$$

а - прямая реакция, b - обратная

дикетонат-анион, его образование сдвигает равновесие (все стадии реакции - обратимы!) в сторону образования продукта.

1. Значительная енолизация вследствие возникновения сопряжения и внутримолекулярной водородной связи


2. Высокая СН-кислотность (делокализация заряд в анионе)


3. Алкилирование дикетонат-аниона как метод синтеза алкилзамещенных кетонов

Высокая СН-кислотность позволяет превращать дикетон в анион нацело, что исключает возможность протекания побочных конденсаций - в растворе присутствует только один нуклеофил (дикетонат-анион) и один электрофил - алкилгалогенид

Карбоновые кислоты

Получение

2. Окисление спиртов

RCO₂H [O] =
$$Cr^{6+}/H^{+}$$
, t; Mn^{7+}/H^{+} , t; X_{2}/HO^{-}

3. Из алкилгалогенидов

RX
$$\frac{CN}{S_N 2}$$
 RCN $\frac{H_3O^+}{}$ RCO₂H

4. Окисление альдегидов

[O] RCHO
$$\longrightarrow$$
 RCO₂H [O] = Cr⁶⁺/H⁺, t; Mn⁷⁺/H⁺, t; X₂/HO⁻, O₂ (воздух); Ag⁺ (реактив Толленса, реакция "серебряного зеркала"); R'CO₃H (реакция Байера-Виллигера)

5. Из кетонов

Окисление происходит с разрушением скелета

$$R_{1}H_{2}C \xrightarrow{O} CH_{2}R_{2} \xrightarrow{MnO_{4}^{-}, H^{+}} R_{1}CH_{2}CO_{2}H + R_{1}CO_{2}H + R_{2}CH_{2}CO_{2}H + R_{2}CO_{2}H$$

$$R'CO_{3}H \xrightarrow{O} CH_{2}R_{2} \xrightarrow{H_{3}O^{+}} R_{1}CH_{2}CO_{2}H + R_{2}CH_{2}OH$$

RCOCH₃
$$\frac{X_2}{HO^-}$$
 RCO₂ + CX₃H галоформный распад X = CI, Br

Перегруппировка Фаворского

$$R \xrightarrow{Br_2} R \xrightarrow{HO^-} R \xrightarrow{HO^-} R \xrightarrow{Br^-} R \xrightarrow{-Br^-}$$

6. Использование металлоорганических соединений

RMgX
$$\frac{1. CO_2}{2. H_3O^+}$$
 RCO₂H

Синтез муравьиной кислоты (в промышленности)

NaOH
$$\frac{CO}{p, t}$$
 HCO₂Na $\frac{H_3O^+}{}$ HCO₂H

Тривиальные названия некоторых кислот RCO₂H:

R = H (муравьиная), CH_3 (уксусная), C_2H_5 (пропионовая), C_3H_7 (масляная), C_4H_9 (валериановая), C_5H_{11} (капроновая), $C_{15}H_{31}$ (пальмитиновая), $C_{16}H_{33}$ (маргариновая), $C_{17}H_{35}$ (стеариновая)

Высокая растворимость в воде, высокая температура кипения

$$R \xrightarrow{O^{\bullet, \bullet, H} O} R$$

1. Кислотность

$$R \xrightarrow{FH^+} R \xrightarrow{O} R \xrightarrow{O}$$
 делокализация заряда

Акцепторные заместители R повышают устойчивость аниона (и кислотность соответствующей кислоты), доноры - снижают RCO₂H

Сила кислоты $X-C_6H_2CO_2H$

X	2-CO ₂ H	2-OH	4-NO ₂	4-CO ₂ H	3-CO ₂ H	2-CH ₃	Н	3 (4)-CH ₃	4-OCH ₃	4-NH ₂
pK	2.95	2.98	3.4	3.54	3.62	3.9	4.2	4.3	4.49	4.92

Отсутствие прямого сопряжения заряженных атомов кислорода с заместителем в ароматическом кольце

"Косвенное" влияние мезомерных заместителей

$$CO_2$$
 O_2N O_2N

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

более устойчивая ВМВС

нарушение планарности (сопряжения)

Производные карбоновых кислот

Образование солей

Образование сложных эфиров (реакция этерификации)

$$RCO_2H \xrightarrow{R'OH} RCO_2R' + H_2O$$

$$R \xrightarrow{O} H^{+} R \xrightarrow{OH} R \xrightarrow{OH}$$

Все стадии процесса обратимы. Положение равновесия определяется количеством воды - при проведении этерификации воду необходимо удалять. В избытке воды в кислой среде происходит гидролиз эфира по той же самой схеме.

Образование эфиров при взаимодействии карбоновых кислот со спиртами в условиях щелочного катализа невозможно вследствие того, что первая стадия процесса – депротонирование карбоксильной группы, а образующийся карбоксилат-анион является очень слабым электрофилом.

Другие способы получения сложных эфиров:

RCO₂H
$$\xrightarrow{SOCI_2}$$
 R \xrightarrow{O} R

Синтез амидов карбоновых кислот

Метод, используемый в пептидном синтезе

RCO₂H R'NH₂ RCONHR' реакция происходит быстро и в мягких условиях

$$N - C = R_1 - N = C = N - R_1$$
 дициклогексилкарбодиимид (ДЦК)

$$RCO_2H + R_1-N=C=N-R_1 - R_1 - R_1$$

Гидролиз нитрилов

уходящая группа

в кислой среде

RCN
$$\xrightarrow{H_3O^+}$$
 $\xrightarrow{R-C = NH}$ $\xrightarrow{H_2O}$ $\xrightarrow{R-C = NH}$ $\xrightarrow{H_2O}$ $\xrightarrow{R-C = NH}$ $\xrightarrow{R-C = NH}$

в щелочной среде

$$R - C = N \xrightarrow{HO^{-}} OH \xrightarrow{H_{2}O} OH \xrightarrow{H_{2}O} HO^{-}$$

$$R - C = N \xrightarrow{H_{2}O} OH \xrightarrow{HO^{-}} NH \xrightarrow{RCO_{2}H} HO^{-}$$

$$R - C = N \xrightarrow{H_{2}O} OH \xrightarrow{HO^{-}} RCO_{2}H$$

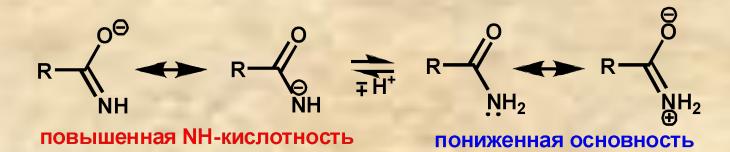
$$R - C = N \xrightarrow{H_{2}O} OH \xrightarrow{HO^{-}} RCO_{2}H$$

$$R - C = N \xrightarrow{H_{2}O} OH \xrightarrow{HO^{-}} RCO_{2}H$$

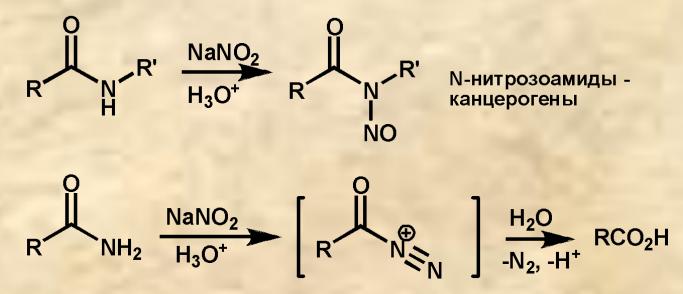
$$R - C = N \xrightarrow{H_{2}O} OH \xrightarrow{HO^{-}} RCO_{2}H$$

$$R - C = N \xrightarrow{H_{2}O} OH \xrightarrow{HO^{-}} RCO_{2}H$$

$$R - C = N \xrightarrow{H_{2}O} OH \xrightarrow{HO^{-}} RCO_{2}H$$


$$R - C = N \xrightarrow{H_{2}O} OH \xrightarrow{HO^{-}} RCO_{2}H$$

$$R - C = N \xrightarrow{H_{2}O} OH \xrightarrow{HO^{-}} RCO_{2}H$$


$$R - C = N \xrightarrow{H_{2}O} OH \xrightarrow{HO^{-}} RCO_{2}H$$

Обратная реакция (дегидратация амидов)

$$\frac{SOCI_2}{или P_2O_5}$$
 RCN

нитрозирование

очень хорошая уходящая группа легко протекающий гидролиз

Ангидриды карбоновых кислот

$$RCO_2Na$$
 $RCOCI$ RCO_2Na RCO_2Na RCO_2H RCO_2H

Взаимодействие производных карбоновых кислот с металлоорганическими соединениями

RCO₂H
$$\frac{R'MgX}{-R'H}$$
 RCO₂- $\frac{1. R'MgX}{2. H_3O^+}$ R'

RCN $\frac{1. R'MgX}{2. H_3O^+}$ R'

RCOCI $\frac{1. R'MgX}{2. H_3O^+}$ RCOCI $\frac{1. R'MgX}{2. H_3O^+}$ R'

$$RCO_{2}R" \xrightarrow{1. R'MgX} R' \xrightarrow{R} OH$$

$$RCO_{2}NH_{2} \xrightarrow{R'MgX} RCO_{2}NH$$

Восстановление производных карбоновых кислот

Общая схема реакции производных карбоновых кислот с нуклеофилами (присоединение-отщепление)

$$R \xrightarrow{\text{O}} \text{Nu} \xrightarrow{\text{P}} R \xrightarrow{\text{O}} \text{Nu} \xrightarrow{\text{Nu}} R \xrightarrow{\text{Nu}} R$$

Реакция происходит тем легче, чем лучше уходящая группа.

Ряд активности производных карбоновых кислот:

галогенангидриды (X = I, Br, CI) > ангидриды (X = OCOR) > эфиры (X = OR') >> амиды (X = RNHR') >> кислоты (X = OH, депротонирование!)

Реакции по альфа-углеродному атому

Карбонильные соединения

Производные карбоновых кислот

$$-\langle X \rangle \xrightarrow{H^+} = \langle X \rangle$$

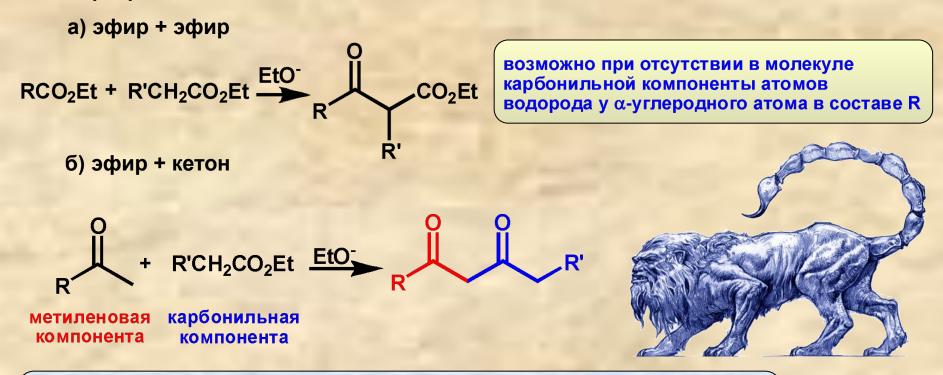
нехарактерно, кроме X = галоген

$$\frac{1}{X} \xrightarrow{\frac{B^{-}}{X}} = \frac{1}{X} \xrightarrow{X} = \frac{1}{X}$$

резонансная стабилизация малозначима (мезомерное влияние гетероатома)

Реакция Геля-Фольгарда-Зелинского

$$RCH_2CO_2H$$
 $\xrightarrow{Br_2}$ $RCHBrCOBr$ или $RCHBrCO_2H$ $Br_2 + P \longrightarrow PBr_3$ RCH_2CO_2H $\xrightarrow{PBr_3}$ RCH_2COBr \Rightarrow \xrightarrow{Br} $\xrightarrow{RCH_2CO_2H}$ $\xrightarrow{RC$


При использовании 1/3 моля красного фосфора продуктом реакции является галогензамещенный галогенангидрид, в случае каталитических количеств фосфора – бромзамещённая кислота

Более низкая СН-кислотность сложных эфиров по сравнению с карбонильными соединениями требует применения более сильного основания - EtO⁻ (NaNH₂, NaH, Na)

все стадии процесса обратимы, равновесие сдвигается в сторону образования продукта за счёт солеобразования на последней стадии

Перекрестная конденсация

СН-кислотность кетона заметно выше, чем у сложного эфира (резонансная стабилизация). Поэтому, применение достаточно сильного основания позволяет проводить реакцию таким образом, чтобы кетон преимущественно выступал в качестве метиленовой компоненты.

в) эфир + альдегид

Такую перекрестную конденсацию осуществить, как правило, не удается – альдегид и более сильная СН-кислота, и значительно более активная карбонильная компонента, чем сложный эфир. Будет происходить конденсация альдегида самого с собой.

такая конденсация в принципе возможна, поскольку альдегид не может быть метиленовой компонентой, а очень сильное основание (и очень слабый нуклеофил!) - NaH - может создать большую концентрацию аниона из сложного эфира.

Использование в качестве основания более слабого основания и более сильного нуклеофила – алкоголят-аниона приведет к протеканию другой конкурентной реакции –диспропорционированию альдегида (Канниццаро)

Конденсация Дикмана -

Разновидность конденсации Кляйзена, приводящая к образованию циклических продуктов

внутримолекулярная конденсация

реакция подходит для синтеза 5- и 6-членных циклов

межмолекулярная конденсация

Конденсация Перкина

$$Aco^{-}$$
 H
 Aco^{-} Aco^{-}

реакция возможно только для R, не содержащих атомов водорода у α -углеродного атома (например, Ph)

Ацилоиновая конденсация

$$n(H_2C)$$
 OEt
 OEt

$$n(H_2C)$$

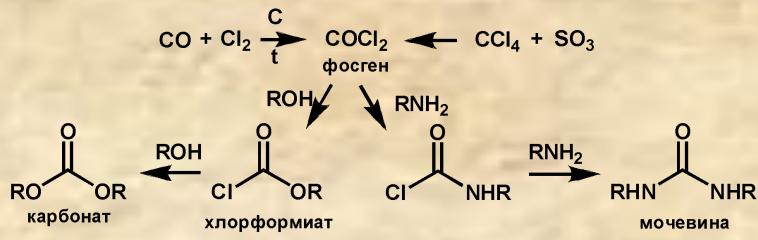
Na

 $n(H_2C)$
 H_2O
 $n(H_2C)$
 $O\ominus$
 OOO
 OOO

реакция пригодна для получения макроциклов

Применение бета-кетоэфиров в синтезе

кетонное расщепление


кислотное расщепление

реакция конденсации обратима!

$$CO_2Et$$
 EtO CO_2Et CO_2ET

Дикарбоновые кислоты

Производные угольной кислоты

мочевина (карбамид)

перекрестная конденсация Кляйзена, карбонат может выступать только в качестве карбонильной компоненты

$$H_2$$
N H_2 CH_2 О H_2 N H_2 H_2 N H_2 H_3 О H_2 H_3 О H_2 H_3 О H_4 H_4 H_4 H_5 H_5 H_5 H_5 H_4 H_5 H_5 H_5 H_5 H_5 H_6 H

«Настоящие» дикарбоновые кислоты

Методы синтеза

$$HCO_{2}Na \xrightarrow{t} CO_{2}Na \xrightarrow{H_{3}O^{+}} CO_{2}H$$

$$CH_{3}CO_{2}H \xrightarrow{CI_{2}} CICH_{2}CO_{2}H \xrightarrow{1. NaOH} CO_{2}H \xrightarrow{CO_{2}H} CO_{2}H$$

$$CH_{3}CO_{2}H \xrightarrow{CI_{2}} CICH_{2}CO_{2}H \xrightarrow{1. NaCN} CO_{2}H \xrightarrow{CO_{2}H} CO_{2}H$$

$$CO_{2}H \xrightarrow{CO_{2}H} CO_{2}H \xrightarrow{CO_{2}H} CO_{2}H$$

$$CO_{2}H \xrightarrow{CO_{2}H} CO_{2}H \xrightarrow{CO_{2}H} CO_{2}H$$

Br NaCN CN
$$H_3O^+$$
 CO₂H O_2 O_2 O_2 O_3 O_4 O_4 O_5 O_4 O_5 O_5 O_5 O_6 O_6 O_7 O_8 O

n = 1,2

(ĆH₂)_n

 $[O] = MnO_4/H^+, 1. O_3; 2. H_2O/H_2O_2$

Свойства

1. Кислотность

$$CO_2H$$
 CO_2H CO_2H CO_2H CO_2H CO_2H CO_2H

Причины:

- 1. индуктивный эффект карбоксильной группы.
- 2. Внутримолекулярная водородная связь, стабилизирующая анион.

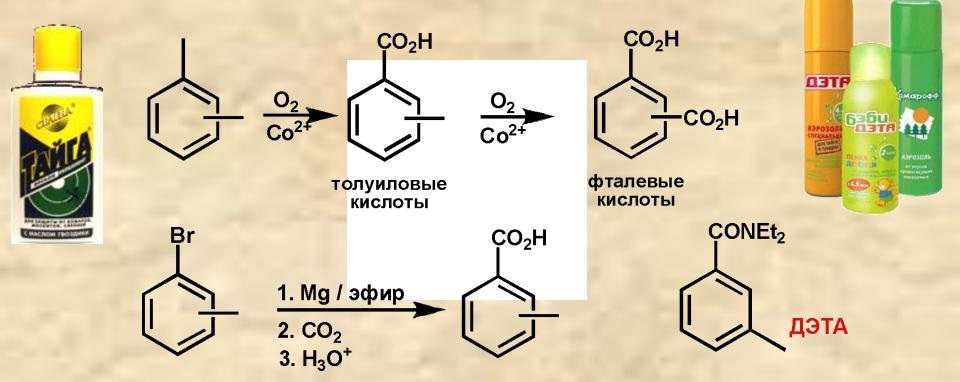
легкость окисление щавелевой кислоты

$$CO_2H$$
 CO_2H
 CO_2H
 CO_2H
 CO_2H

CO₂Et CO₂Et

диэтилоксалат - сложный эфир, не имеющий атомов водорода у α-углеродного атома - активная карбонильная компонента в перекрестных конденсациях Кляйзена

Дегидратация


$$O=C=C=C=O$$
 $\xrightarrow{P_2O_5}$
 CO_2H
 CO_2H

$$\begin{array}{c|c}
CO_2H & \xrightarrow{P_2O_5} & & & & \\
CO_2H & \xrightarrow{P_2O_5} & & & & \\
\end{array}$$

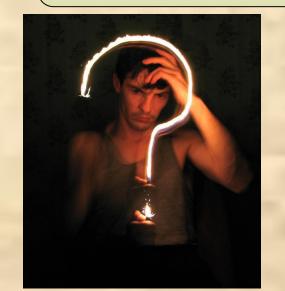
$$_{n}(H_{2}C)$$
 $CO_{2}H$
 $P_{2}O_{5}$
 $CO_{2}H$
 $CO_{2}H$

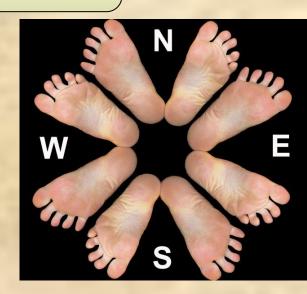
Синтетические применения малонового (натрмалонового) эфира

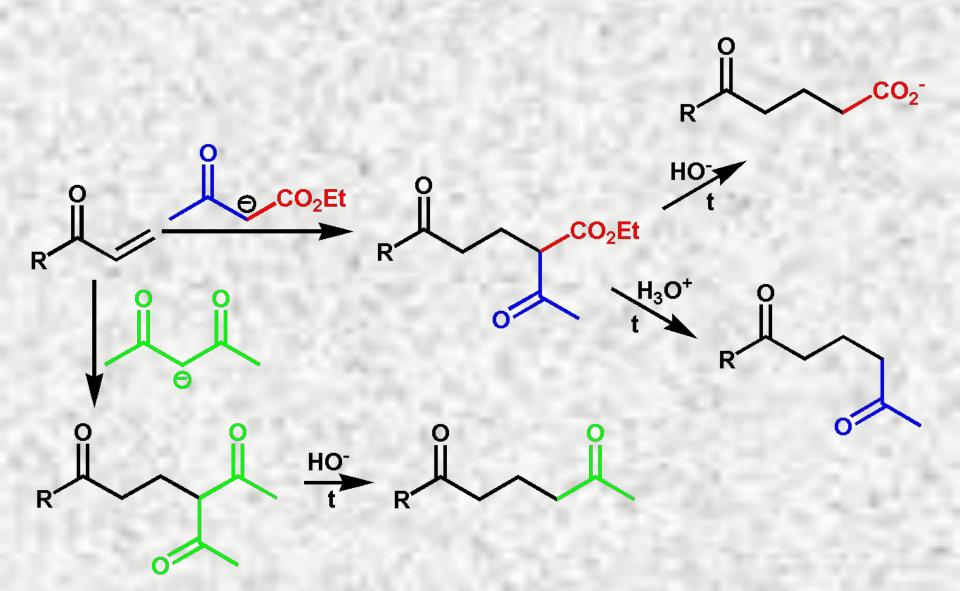
Некоторые свойства ангидридов дикарбоновых кислот

$$O_2$$
 O_2 O_2 O_3 O_2 O_4 O_5 O_2 O_5 O_2 O_3 O_4 O_5 O_2 O_3 O_4 O_5 O_4 O_5 O_5

Акцепторно-замещенные алкены (α,β-ненасыщенные карбонильные соединения, кислоты и их производные)


Синтез


Непредельные кислоты и их производные


$$CO_2H$$
 Br_2 CO_2H $EtO^ CO_2H$ CO_2H CO_2

Свойства (нуклеофильное присоединение)

Присоединению по Михаэлю – взаимодействие акцепторно-замещенных алкенов с карбанионами происходит как 1,4-присоединение!

активированный к нуклеофильному присоединению алкен

Таким образом:

 $R,R'',R''' = CHO, COR_1, CO_2R_1, CN, NO_2$

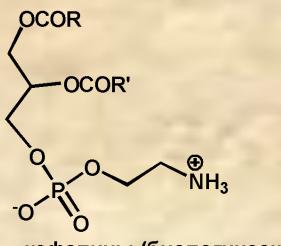
О непредельных кислотах

$$rac{1}{CO_2CH_3}$$
 — полиметилметакрилат (оргстекло)

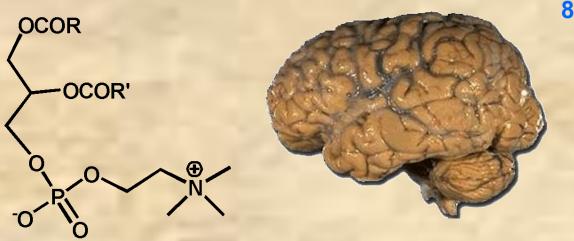
полиакриловая кислота

полиакриламид

кислоты насыщенные


 $CH_3(CH_2)_{14}CO_2H$ пальмитиновая

 $CH_3(CH_2)_{15}CO_2H$ маргариновая


 $CH_3(CH_2)_{16}CO_2H$ стеариновая

кислоты ненасыщенные $H_3C(H_2C)$ (CH₂)₇CO₂Hолеиновая (CH₂)₇CO₂H $H_3C(H_2C)$ элаидиновая CH₃(CH₂)₄CH=CHCH₂CH=CH(CH₂)₇CO₂H линолевая CH₃(CH₂CH=CH)₃(CH₂)₇CO₂H линоленовая

кефалины (биологические мембраны, нервная ткань)

лецитины (биологические мембраны)