o
=
&
0
O

Fast and Simple Physics
using Sequential Impulses

-
-4
i
=
n:
=
.
Y
=

Erin Catto
Crystal Dynamics

GameDevelopers
Conference



3
O
- Physics Engine Checklist
In
o .
%fﬁ » Collision and contact
== & Friction: static and dynamic
& Stacking
@ Joints
&

Fast, simple, and robust

GameDevelopers
Conference



Box2D Demo

o
=
&
0
O

t's got collision

t's got friction

t's got stacking

t's got joints

Check the code, it's simple!

-
4
i
=
i
=
i
Y
=

® & & & @

GameDevelopers
Conference



©
&
O
o
(&)

Fast and Simple Physics

@ Penalty method?
Nope

@ Linear complementarity (LCP)?
Nope

@ Joint coordinates (Featherstone)?
Nope

@ Particles (Jakobsen)?
Nope

@ Impulses?
Bingo!

-
-4
L
=
y‘f
I
a:
. Y
=

GameDevelopers
Conference



Why Impulses?

©
&
O
o
(&)

@ Most people don’t hate impulses

@ The math is almost understandable
@ Intuition often works

@ Impulses can be robust

-
-4
L
=
En::
I
a:
. Y
=

om

/ AV:B
m

GameDevelopers
Conference

P



Making Impulses not Suck

0
o
(&)
o
O

@ Impulses are good at making things
bounce.

@ Many attempts to use impulses leads to
bouncy simulations (aka jitter).

@ Forget static friction.
@ Forget stacking.

I
-4
L
=
n:
=
aq:
. Y
=

GameDevelopers
Conference



Impulses without the Bounce

<
<
O
=)
o

@ Forget bounces for a moment.
@ Let's concentrate on keeping things still.

@ It's always easy to add back in the
bounce.

I
-4
i
=
n
I
a:
. Y
=

GameDevelopers
Conference



The 5 Step Program

(for taking the jitter out of impulses)

o
=
&
0
O

I
-4
i
=
n
I
aq:
. Y
=

Accept penetration

Remember the past

Apply impulses early and often
Pursue the true impulse
Update position last

® & & & @

GameDevelopers

Conference



o
o .
| Penetration
l:l'I;E
=
g: @ Performance
== & Simplicity
@ Coherence
» Game logic N
@ Fewer cracks

GameDevelopers
Conference



o
=
&
0
©®

Algorithm Overview

Compute contact points
Apply forces (gravity)
Apply impulses

Update position

Loop

-
-4
i
=
i
=
.
Y
=

® & & & @

GameDevelopers

Conference



Contact Points

©
=
O
o
(&)

Position, normal, and penetration
Box-box using the SAT

Find the axis of minimum penetration
Find the incident face on the other box
Clip

-
-4
L
=
n:
I
a:
. Y
=

® & & & @

GameDevelopers
Conference



3

e

== Box-Box SAT

i ;

e . .

§3: @ First find the separating

= axis with the minimum n
penetration.

% In 2D the separating axis VAR
Is a face normal.

GameDevelopers
Conference



-3
2O
- Box-Box Clipping Setup
n
g .
%fi # ldentify reference face
== & l|dentify incident face 1
incident / NS
reference
GameDevelopers

Conference



Box-Box Clipping

o
=
&
0
O

clipping planes

@ Clip incident face
against reference
face side planes (but

I
-4
i
=
n
I
aq:
. Y
=

not the reference n

face). N ‘
@ Consider clip points .

with positive

penetration.

GameDevelopers

Conference



©
&
O
o
(&)

Feature Flip-Flop

@ Which normal is the
separating axis? n,

= Apply weightings to
prefer one axis over
another.

@ |mproved coherence.

-
-4
L
=
En::
I
a:
. Y
=

GameDevelopers
Conference



o
=
&
0
©®

Apply Forces

Newton’s Law mv =F
lo+oxlm=T

-
-4
i
=
i
=
.
Y
=

lgnore gyroscopic term
for improved stability

v,=v,+Atm 'F

Use Euler’s rule ®, =0, +AtI"'T

GameDevelopers
Conference



Impulses

o
=
&
0
©®

@ |Impulses are applied at each contact point.
@ Normal impulses to prevent penetration.
@ Tangent impulses to impose friction.

-
4
L
=
|:rl i
=
i
. Y
=

GameDevelopers
Conference



Computing the Impulse

2 "2\

VAR S A

1 r

~0
o
()
Q
()

I_
>
L
=
iy
-
B B
o i
R

GameDevelopers
Conference



I
-4
i
=
n:
=
1 :
. Y
=

o
=
&
0
(&

Linear Momentum

The normal impulse
causes an instant
change in velocity.

We know the direction of
the normal impulse. We
only need it's magnitude.

GameDevelopers

Conference



Relative Velocity

~0
o
()
Q
()

I_
>
i
Fd
iy
-
B B
o i
R

A=V + V,x@—1 — X

Along Normal:

v =Av-n

GameDevelopers
Conference



S
i
== The Normal Impulse
i
-
= Want: v =0 P >0
=
Get: P :max(_AV.n,O)
Fine Print:
AO=V + V,Xx@®)— T, — | X
kn:L+L+[If1(rl><n)xrl+12_1(r2><n)><r2:|-n

GameDevelopers
Conference



Bias Impulse

o
=
&
0
©®

@ Give the normal impulse some extra
oomph.

@ Proportional to the penetration.
= Allow some slop.
= Be gentle.

-
-4
i
=
i
=
.
Y
=

GameDevelopers
Conference



~0
o
O
Q
()

I_
5
i
z
i
-
I -
T
=

Bias Velocity

Slop: O 1op

Bias Factor: 8 ~[0.1,0.3]

Bias velocity:
p
Vi = Emax (0,6 — 5S,0p)

)

slop

GameDevelopers
Conference



Bias Impulse

~0
o
()
Q
()

With bias velocity, this:

I_
>
L
=
iy
-
B B
o i
R

Becomes:

P = max(_AV.Z-I_vbms ,Oj

n

GameDevelopers
Conference



©
=
(5]
Q
O

Friction Impulse

Tangent Velocity: v, =Av-t

-
4
i
=
iy
e
i
8 {7
=

Want: v, =0 —uP. <P <uP

—Av -t

Get: P, = clamp( ,—HP,, uP)

4

Fine Print;

1 1 _ )
k, =;1+m—2+[11l(rlxt)xrl+121(r2><t)><1~2].t

GameDevelopers
Conference



Sequential Impulses

o
=
&
0
O

@ Apply an impulse at each contact point.

@ Continue applying impulses for several
iterations.
@ Terminate after:

- fixed number of iterations
- impulses become small

I
-4
i
=
n
I
aq:
. Y
=

GameDevelopers

Conference



-3
s
=+ Nalve Impulses
i
=
% _ Each impulse is computed
= lvelocnty independently, leading to
jitter.
]

D E] f velocity
p T

1 P2

GameDevelopers
Conference



Where Did We Go Wrong?

o
o
&
0
O

@ Each contact point forgets its impulse
history.

@ Each contact point requires that every
Impulse be positive.

@ There is no way to recover from a bad
Impulse.

I
-4
L
=
n:
=
aq:
. Y
=

GameDevelopers

Conference



Accumulated Impulses

©
=
(5]
Q
O

Each impulse adds to
lvelocity the total. Increments
can be negative.

L] T [

-
-4
i
=
i
=
.
Y
=

A T r 'f
P, P, AP, AP,
GameDevelopers

Conference



The True Impulse

0
=]
(&)
o
O

@ Each impulse adds to an accumulated
impulse for each contact point.

@ The accumulated impulse approaches
the true impulse (hopefully).

@ True impulse: an exact global solution.

I
-4
L
=
n:
=
aq:
. Y
=

GameDevelopers

Conference



o
=
&
0
©®

Accumulated Impulse

@ Clamp the accumulated impulse, not the
iIncremental impulses.

-
-4
i
=
i
=
.
Y
=

Accumulated impulses:

})Zn A

GameDevelopers
Conference



Correct Clamping

©
=
(5]
Q
O

Normal Clamping: temp = P,

PB,, =max (B, +P,.,0)

-
4
i
=
iy
=
i
8 {7
=

P =F _—temp

Friction Clamping: temp = P,
f)Zt = Clamp(})zt —I—B,—‘U})anuf)zn)
P =R, —temp

{

GameDevelopers
Conference



Position Update

©
=
(5]
Q
O

= Use the new velocities to integrate the
positions.

@ The time step is complete.

-
g
il
=
o B
e
.
Y
=

GameDevelopers
Conference



Extras

©
=
(5]
Q
O

Coherence

Feature-based contact points
Joints

Engine layout

Loose ends

3D Issues

-
-4
i
Fd
oL B
=
a:
x:
-

® & & & & @

GameDevelopers
Conference



Coherence

©
=
O
o
(&)

= Apply old accumulated impulses at the
beginning of the step.

@ Less iterations and greater stability.

= \We need a way to match old and new
contacts.

-
-4
L
=
n:
I
a:
. Y
=

GameDevelopers
Conference



-
i
il
=
n:
-
aq:
2
=

%
O
()

Feature-Based Contact Points

@ Each contact point is the result of
clipping.

@ It is the junction of two different edges.

= An edge may come from either box.

@ Store the two edge numbers with each
contact point — this is the Contact ID.

GameDevelopers

Conference



-3
O
Qo .
= Contact Point IDs
i
E & - c,
% 2 , ) box 1 edge 2
T ‘ box 2 edge 3
e, €, -
cr.\\\\\\\“““l ¢
|
= “ box 2 edge 3
1 box 2 edge 4
GameDevelopers

Conference



Joints

o
=
&
0
O

@ Specify (constrain) part of the motion.

@ Compute the impulse necessary to
achieve the constraint.

 Use an accumulator to pursue the true
iImpulse.

# Bias impulse to prevent separation.

I
-4
i
=
n
I
aq:
. Y
=

GameDevelopers

Conference



Revolute Joint

o
=
&
0
O

@ Two bodies share
a common point.

@ They rotate freely
about the point.

-
4
i
=
i
=
i
Y
=

GameDevelopers
Conference



Revolute Joint

©
=
(5]
Q
O

@ The joint knows the
local anchor point
for both bodies.

-
-4
i
s
o B
=
a:
xI:
=

A
1

GameDevelopers
Conference



Relative Velocity

o
=
&
0
O

@ The relative velocity of the anchor
points Is zero.

-
-4
i
=
n:
=
.
Y
=

Aw=v+ v,x@—r,— x =0

@ An impulse is applied to the two
bodies.

GameDevelopers
Conference



3
MO
—~ Linear Momentum
n ;
.— o
%i @ Apply linear momentum to the relative
= i velocity to get:
KP = -AvV
@ Fine Print:
K:( L, jl—"'rllfrl 1,1,
m, m,

@ Tilde (~) for the cross-product matrix.

GameDevelopers
Conference



K Matrix

o
=
&
0
©®

@ 2-by-2 matrix in 2D, 3-by-3 in 3D.
@ Symmetric positive definite.

@ Think of K as the inverse mass matrix of
the constraint.

-
-4
i
=
i
=
.
Y
=

M =K'

Cc

GameDevelopers
Conference



Bias Impulse

©
=
&
=
O

@ The error is the separation between the
anchor points

-
-4
i
=
n:
=
.
Y
=

Ap=X,+r, =X, — I,

@ Center of mass: x
« Bias velocity and impulse:

GameDevelopers
Conference



Engine Layout

o
=
&
0
©®

@ The World class contains all bodies,
contacts, and joints.

@ Contacts are maintained by the Arbiter
class.

-
-4
i
=
i
=
.
Y
=

GameDevelopers
Conference



o
=
&
=
©

I
-4
i
=
n
I
a:
. Y
=

Arbiter

@ An arbiter exists for every touching pair of
boxes.

@ Provides coherence.

 Matches new and old contact points
using the Contact ID.

@ Persistence of accumulated impulses.

GameDevelopers

Conference



Arbiters

~O
o
O
Q
(4

-

i

i
£
i S
g
=

Arbiter ——>

GameDevelopers
Conference



S
O
=1 Collision Coherence
n
.E‘-;ff @ Use the arbiter to store the separating
= axXiIs.
@ Improve performance at the cost of
memory.

@ Use with broad-phase.

GameDevelopers
Conference



I
-4
L
=
n:
=
aq:
. Y
=

0
o
(&)
o
O

More on Arbiters

@ Arbiters are stored in a set according to
the ordered body pointers.

@ Use time-stamping to remove stale
arbiters.

@ Joints are permanent arbiters.
@ Arbiters can be used for game logic.

GameDevelopers
Conference



Loose Ends

o
=
&
0
O

@ Ground is represented with bodies whose
Inverse mass Is zero.

@ Contact mass can be computed as a
pre-step.

@ Bias impulses shouldn’t affect the velocity
state (TODO).

I
-4
i
=
n
I
aq:
. Y
=

GameDevelopers

Conference



3D Issues

o
=
&
0
(&

@

Friction requires two axes.

Align the axes with velocity if it is
non-zero.

« ldentify a contact patch (manifold) and
apply friction at the center.

This requires a twist friction.
Big CPU savings.

I
-4
i
=
n:
=
1 :
. Y
=

®

® ®

GameDevelopers

Conference



=
i
=~ Questions?
i
'— v
I @ http://www.gphysics.com
g;; @ erincatto at that domain
' =~ Download the code there.
@ Buy Tomb Raider Legend!

GameDevelopers
Conference



S

i

- References

n

E @ Physics-Based Animation by Kenny Erleben et al.
g » Real-Time Collision Detection by Christer Ericson.
o @ Collision Detection in Interactive 3D Environments by

Gino van den Bergen.

@ Fast Contact Reduction for Dynamics Simulation by Adam
Moravanszky and Pierre Terdiman in Game Programming
Gems 4.

GameDevelopers
Conference



