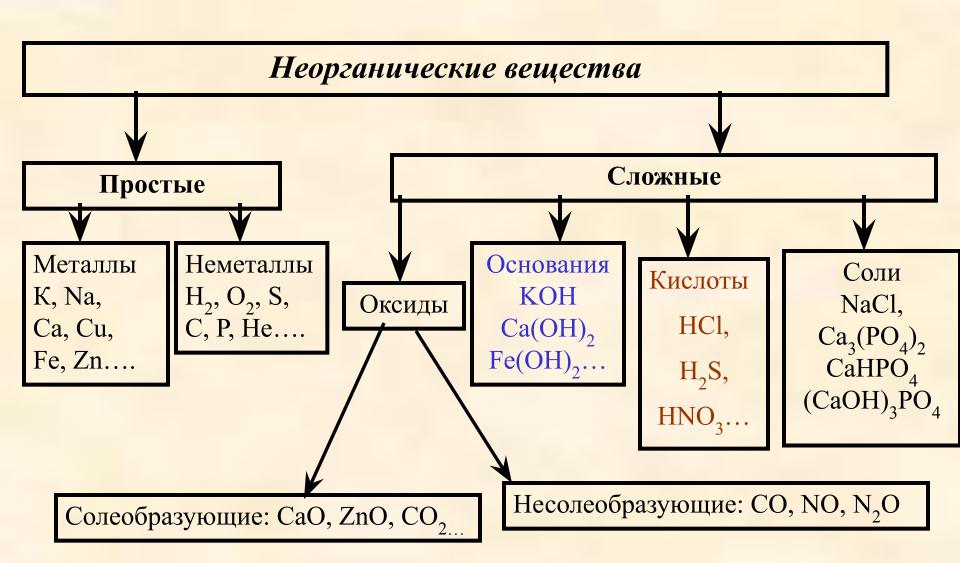
Классы неорганических соединений


Степень окисления элемента

- Степень окисления (ст. ок.) условный заряд атома элемента в соединении.
- Степень окисления может быть нулевой, положительной и отрицательной.
- Степень окисления атомов в простых веществах всегда равна 0.
- Обозначение C^0 , $O_2^{\ 0}$

Степень окисления атомов элементов в сложных веществах

- может быть постоянной и переменной.
 - Постоянная степень окисления атомов элементов
- *Катионы:* Li⁺; Na⁺; K⁺; Rb⁺; Cs⁺; Ag⁺; Be²⁺; Mg²⁺; Ca²⁺; Sr²⁺; Ba²⁺; Zn²⁺; Cd²⁺; Al³⁺
- *Анионы:* F⁻; S²⁻

Общая классификация неорганических веществ

Оксиды. Определение.

Оксиды — это сложные вещества, состоящие из атомов двух элементов, один из которых кислород в степени окисления «-2»

общая формула оксида

- $9_{2}^{+x}O_{x}^{-2}$
- «+х» степень окисления элемента
- «-2» степень окисления кислорода

Оксиды. Номенклатура.

«Оксид» + название элемента, образующего оксид в родительном падеже + в скобках римскими цифрами валентность, если для элемента она может быть переменной:

Например

СаО – оксид кальция,

СО – оксид углерода (II),

CO₂ – оксид углерода (IV).

Примеры.

- Запишите формулы оксидов : оксид железа (II), оксид серы (VI), оксид бора.
- •2. Назовите оксиды: K₂O, Al₂O3, MnO, Mn₂O₇, SiO₂, SiO

Оксиды. Классификация.

1.Несолеобразующие. Не могут образовать солей.

2. Солеобразующие. Образуют соли.

Солеобразующие оксиды

Oсновные: K₂O, CaO, CuO,MnO. Амфотерные: BeO, ZnO, PbO, SnO,Al₂O₃, Cr₂O₃, PbO₂, SnO₂ Кислотные: CO₂, SO₃, CrO₃ Mn,O₇

Гидратная форма — основание. К₂О - КОН, СаО - Са(ОН)₂, СиО -Си(ОН)₂, МпО - Мп(ОН)₃

Тидратная форма амфотерный гидроксид

Гидратная форма - кислота. СО, - H, СО,,

SO₃ -H₂SO₄, CrO₃ - HCrO₄, Mn₂O₇ -HMnO₂

Химические свойства оксидов Основные оксиды.

- Оксид + вода=основание (щелочь). Растворимы в воде только оксиды щелочных и щелочноземельных металлов.
- $\cdot K_2O + H_2O = 2KOH$
- BaO+ H_2 O= Ba(OH)₂

2. Основной оксид+ кислотный оксид= соль

$$\bullet$$
MgO+CO₂ =MgCO₃

$$\cdot \text{Li}_2\text{O} + \text{N}_2\text{O}_5 = 2\text{LiNO}_3$$

3. Основной оксид + кислота = соль+вода

$$\cdot \mathbf{CuO} + \mathbf{H}_2 \mathbf{SO}_4 = \mathbf{CuSO}_4 + \mathbf{H}_2 \mathbf{O}_4$$

•FeO+2HCl=FeCl₂+ H₂O

Кислотные оксиды.

Это оксиды неметаллов и металлов в высшей степени окисления.

1. Кислотный оксид+вода = кислота.

- В воде растворяются все кислотные оксиды кроме SiO,.
- SO₃+H₂O=H₂SO₄,
- $\bullet N_2 O_5 + H_2 O = 2HNO_3$
- $CrO_3 + H_2O = H_2CrO_4$, $Mn_2O_7 + H_2O = 2HMnO_4$

2. Кислотный оксид+основной=соль

•Приведите примеры.

3. Кислотный оксид+основание=соль+вода

$$\bullet N_2O_5 + Ca(OH)_2 = Ca(NO_3)_2 + H_2O$$

Амфотерные оксиды.

Оксиды металлов, которые в зависимости от условий могут проявлять свойства либо кислотных, либо основных оксидов. BeO, ZnO, PbO, SnO, Al₂O₃, Cr₂O₃, PbO₂, SnO₂

Свойства

- В воде нерастворимы.
- могут растворяться как в кислотах (проявляют основные свойства), так и в щелочах (проявляют кислотные свойства).

В качестве гидратной формы им могут соответствовать как кислота, так и основание

$$-Zn(OH)_2 \leftarrow ZnO \rightarrow H_2ZnO_2$$

$$Al(OH)_3 \leftarrow Al_2O_3 \rightarrow H_3AlO_3$$

Свойства амфотерных оксидов.

Амфотерный оксид + Основной оксид = соль

• BeO+K₂O=K₂BeO₂ сплавление

2.Амфотерный оксид+щелочь= соль + вода

- Al₂O₃+NaOH(тв.)=NaAlO₂+H₂O сплавление
- $Cr_2O_3+6NaOH(p-p)+3 H_2O = 2Na_3[Cr(OH)_6]$

NaAlO₂- метаалюминат натрия Na₃[Al(OH)₆]-гексагидроксоалюминат натрия

3. Амфотерный оксид=соль

 \cdot ZnO+SO₃=ZnSO₄

4. Амфотерный оксид+кислота=соль+вода

 \bullet Al₂O₃+6HCl=2AlCl₃+3H₂O

Получение оксидов

Взаимодействие простых веществ с кислородом.

- $\circ S+O2=SO2$,
- Mg+O2=2MgO (нагревание)

2. Горение сложных веществ в кислороде.

$$\cdot CH_4 + O_2 = CO_2 + 2H_2O$$

$$\bullet 4NH_3 + O_2 = 4NO + 6H_2O$$

$$\bullet 2H_2S + 3O_2 = 2SO_2 + 2H_2O$$

3. Разложение сложных веществ.

- $CaCO_3 = CaO + CO_2$;
- $Cu(OH)_2 = CuO + H_2O$ нагревание
- $(NH_4)_2Cr_2O_7=Cr_2O_3+N_2^0+4H_2O$ (тепловой импульс)

4. Взаимодействие оксида металла с другим металлом.

•Al +
$$Cr_2O_3$$
= $Cr + Al_2O_3$ (нагревание)

Основания — сложные вещества,

в состав которых входят атомы металла и гидроксогруппы ОН-

Исключением является основание NH₄OH (гидроксид аммония), которое не содержит атомов металла)

Общая формула

- \bullet Me⁺ⁿ(OH)_n⁻¹
- Ме металл
- n степень окисления металла

Номенклатура оснований

Название оснований составляют из слова «гидроксид» и названия металла в родительном падеже:

КОН – гидроксид калия; Мg(ОН)₂ - гидроксид магния; Са(ОН)₂ - гидроксид кальция; Аl(ОН)₃ - гидроксид алюминия. Если металл образует несколько оснований, то после названия металла в скобках римской цифрой указывается степень его окисления:

 $Fe(OH)_2$ — гидроксид железа (II); $Fe(OH)_3$ — гидроксид железа (III); $Cr(OH)_2$ — гидроксид хрома (II); $Cr(OH)_3$ — гидроксид хрома (III).

Основания

Растворимые в воде - щёлочи

Амфотерн. гидроксиды

Нерастворимые в воде — нерастворимые основания

LiOH, KOH,
NaOH, RbOH,
CsOH, Ca(OH)₂.

Be(OH)₂,
Zn(OH)₂,
Sn(OH)₂,
Pb(OH)₂,
Al(OH)₃,
Cr(OH)₃.

Cu(OH)₂ – гидроксид меди (II),

Fe(OH)₂ – гидроксид железа (II),

Химические свойства оснований

Амфотерные гидроксиды

• Амфотерные гидроксид + кислота → соль + вода

$$Zn(OH)_2 + 2HCl \rightarrow ZnCl_2 + 2H_2O$$

Амфотерные гидроксид + щелочь → соль + вода

- (при сплавлении)
 Zn(OH)₂ + 2NaOH(тв.) →
 Na₂ZnO₂ + 2H₂O
- B pactbope:

 Zn(OH)₂ + 2NaOH(p-p) →

 Na,[Zn(OH)₄]

Щелочи	Нерастворимые основания
1. Действие на индикаторы: фенолфталеин — малиновый, метилоранж — желтый, лакмус — синий	
2. Основание + кислота =соль	1. Основание + кислота =
+ вода	соль + вода
2KOH +2HCl =2KCl + H ₂ O	$2Fe(OH)_3 + 3H_2SO_4 = Fe_2(SO_4)_3 + 6H_2O$
3. Основание + кислотный	2. Основание- ^t = оксид + вода
оксид = соль + вода	$2Fe(OH)_3^{t} = Fe_2O_3 + 3H_2O$
$Ba(OH)_2 + CO_2 = BaCO_3 + H_2O$	Cu(OH), $t=CuO+H$, O
4. Щелочь + соль 1 = соль 2 +	
основание	
2KOH+CuSO ₄ =	
$K_2SO_4+Cu(OH)_2=$	

Получение оснований

- Активный металл+вода → щелочь+водород
- только щелочные (Li, Na, K, Rb, Cs), $2Na + 2H_2O \rightarrow 2NaOH + H_2$ щелочноземельные (Ca, Sr, Ba)

$$\mathbf{Ba} + 2\mathbf{H}_2\mathbf{O} \to \mathbf{Ba(OH)}_2 + \mathbf{H}_2$$

2. Основной оксид+вода → щелочь

• только оксиды щелочных и щелочноземельных металлов $K_2O+H_2O \to 2KOH;$ SrO+H $_2O \to Sr(OH),$

3. Соль 1(p-p)+основание1(p-p) → соль2(p-p)+нерастворимое основание2 • FeCl₃(p)+ 3KOH(p) →

3KCl(p)+Fe(OH)₃↓ цвет ржавчины

• ZnSO₄(p)+NH₄OH(p) \rightarrow (NH₄)₂SO₄(p)+Zn (OH)₂ \downarrow белый

Кислоты. Определение

Кислоты - это сложные вещества, в состав которых входят ионы водорода Н+, способные замещаться на металл, и кислотный остаток

Общая формула кислот

- H_n + X⁻ⁿ X кислотный остаток
- n заряд кислотного остатка

Классификация кислот.

- По наличию атомов кислорода в составе молекулы:
 - Бескислородные
 - Кислородосодержащие (оксокислоты) — гидраты кислотных оксидов (ангидридов)

По числу атомов водорода в кислоте, способных замещаться на металл различают кислоты

• одноосновные

• многоосновные.

Кислородосодержащие

- одноосновные HNO₃, HNO₂, HMnO₄
- двухосновные $-H_2SO_4$, H_2SiO_3
- трехосновные H₃PO₄, H₃AsO₄

Бескислородные

• одноосновные HF, HCl, HBr, HI
• двухосновные H₂S, H₂Se, H₂Te,

Номенклатура

Бескислородные кислоты – название неметалла + «О»+слово водородная. Примеры: HCl -хлороводородная; HF - фтороводородная; H, Se - селеноводородная. Запишите формулы кислот: сероводородной, иодоводородной, бромоводородной

Кислородосодержащие

По степени окисления кислотообразующего элемента

- $H_2^{+}S^{+6}$ O_4^{-2} серная кислота
- H+N⁺⁵O₃⁻² -- азотная кислота
- $H_2^{+}S^{+4}$ O_3^{-2} сернистая кислота
- H+N⁺³O,⁻² азотистая кислота
- $H_2^+Cr^{+6}O_4^{-2}$ хромовая кислота $H^+Cr^{+3}O_2^{-2}$ хромистая кислота

По количеству молекул воды, присоединенных одной молекулой ангидрида

- $P_2O_5 + 3H_2O → H_3PO_4$ ортофосфорная кислота
- $P_2O_5 + 2H_2O \rightarrow H_4P_2O_7 -$ пирофосфорная

кислота

• $P_2O_5 + H_2O \rightarrow 2HPO_3 -$ метафосфорная кислота

- H₃AlO₃ ортоалюминиевая кислота (более богатая водой)
- HAlO₂ метаалюминиевая кислота

 $(H_3AIO_3 - H_2O \rightarrow HAIO_2)$

Свойства кислот

Кислоты окрашивают индикаторы

лакмус —

красный

метилрот —

розовый

метилоранж

красный

Твердые: HPO₃, H₃PO₄, H₃BO₃, H₂SiO₃

Жидкие: H_2SO_4 , HNO_3 , HCl и т.д.

Летучие: H₂CO₃, H₂SO₃, HNO₂ и бескислородные кислоты

 $Hелетучие: H_2SO_4, H_3PO_4, и т.д$

Сильные: H_2SO_4 , HNO_3 , HCl, HBr, HI и содержащие металл в высшей степени окисления (H_2CrO_4 , $HMnO_4$)

Слабые: H₂CO₃, H₂SO₃, H₃BO₃, H₂SiO₃, CH₃COOH, H₂S и т.д.

Кислоты

Химические свойства кислот

- 1. Кислота+ основной оксид → соль + вода
- $2HNO_3 + Na_2O \rightarrow 2NaNO_3 + H_2O$

2. Кислота+ основной оксид → соль + вода

•2HNO₃+CaO
$$\rightarrow$$
 Ca(NO₃)₂+H₂O

3. Кислота+ основание → соль + вода

- Реакция нейтрализации
- $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$

• 2HCl+Cu(OH)₂ $\downarrow \rightarrow$ CuCl₂+2H₂O

4. Кислота1+соль1 → кислота2+соль2

• $H_2SO_4(_{KOHIL})+2NaCl_{(TB)}$ (t) $\rightarrow 2HCl \uparrow +Na_2SO_4$

• 2HCl+ $Na_2CO_3 \rightarrow CO_2 \uparrow +H_2O +2NaCl$

• $K_2SiO_3+2HNO_3 \rightarrow H_2SiO_3 \downarrow +2KCl$

Кислота + металл

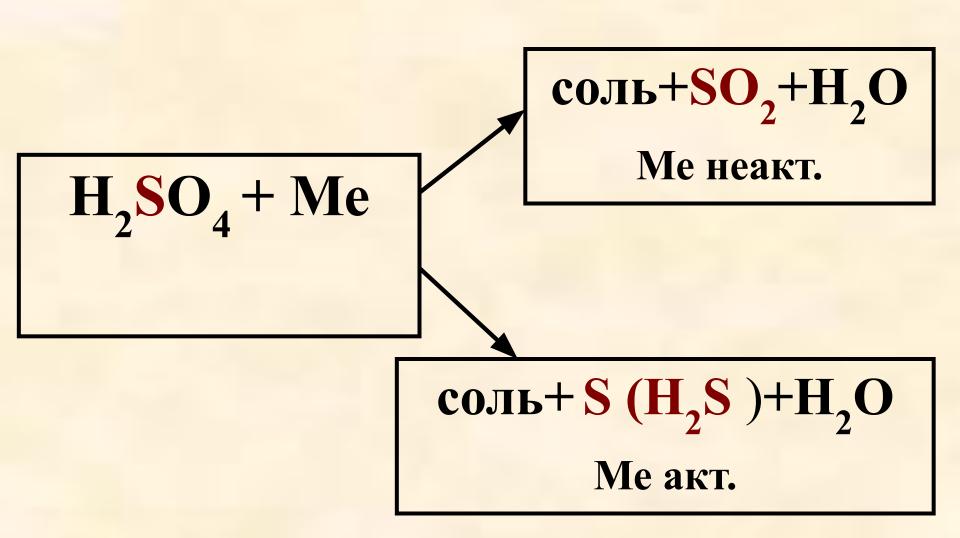
Обычные – выделяется водород + соль

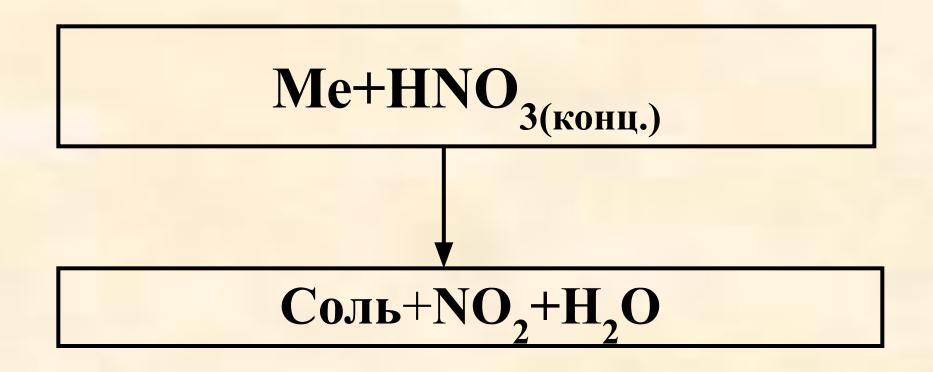
Кислоты

окислители —

водород не

образуется


Кислоты окислители


- H₂SO₄ концентрированная,
- HNO₃ любой концентрации
- при нагревании реагируют со всеми металлами кроме благородных (Au, Pt) и неметаллами.
- Холодные концентрированные кислоты пассивируют Fe, Cr, Al.

Водород из этих кислот не выделяется!

Продукты восстановления кислотообразующего элемента зависят от концентрации кислоты и активности металла

Схемы реакций

Все металлы, кроме благородных.

На холоду пассивируются железо, хром, алюминий.

Me+HNO_{3(разб.)}

Соль+N₂O(N₂)+H₂O - акт. Ме

б) обычные кислоты

- все кроме HNO₃, H₂SO₄ концентрированной
- (H₂SO₄ разбавленная, H₃PO₄, HCl...). Реагируют со всеми металлами (кроме свинца), стоящимими в ряду напряжений до водорода.
- Образуются соль и ВОДОРОД!
- $Fe+H_2SO_4 = FeSO_4 + H_2$

К слайду 70

Взаимодействие металлов с концентрированной серной кислотой

- неактивный металл $(SO_4)^{2-} \square S^{+4}O_2$ Cu+2H₂SO₄(к) \square CuSO₄+SO₂ \square +2H₂O
- активный металл $(SO_4)^{2-}\square S^0$ или до H_2S^{-2}
- $Zn+2H_2SO_4(\kappa) \square ZnSO_4+S\square+2H_2O$
- $4Mg + 5H_2SO_4(\kappa) \square 4MgSO_4 + H_2S\square + 4H_2O$

Взаимодействие азотной кислоты с металлами

Концентрированная азотная кислота.

Продукт восстановления N⁺⁵ не зависит от активности металла.

Неактивный металл $Cu+4HNO_3(\kappa) □ Cu(NO_3)_2+NO_2 □+2H_2O$

Активный металл $Mg+4HNO_3$ (к) $\square Mg(NO_3)_2+NO_2\square+2H_2O$

Разбавленная азотная кислота.

Неактивный металл восстанавливает N^{+5} до NO 3Cu+8HNO₃(p) □ 3Cu(NO₃)₂+2NO □ +4H₂O

Неактивный металл восстанавливает N^{+5} до N_2 О или N_2

$$4Zn+10HNO_{3}(p) \Box 4Zn(NO_{3})_{2}+N_{2}O \Box +5H_{2}O$$

 $5Mg+12HNO_{3}(p) \Box 5Mg(NO_{3})_{2}+N_{2}^{0}\Box +6H_{2}O$

Очень разбавленная азотная кислота.

Активный металл восстанавливает N^{+5} до N^{-3} 4Ca+10HNO₃(оч.р) \square 4Ca(NO₃)₂+NH₄NO₃+3H₂O

Получение кислот

1. Кислотный оксид + вода Пкислота.

 $SO_3+H_2O \square H_2SO_4$ – серная кислота

 $P_2O_5 + 3H_2O \square 2H_3PO_4 -$ ортофосфорная кислота

 $Mn_2O_7 + H_2O \square 2HMnO_4 - марганцовая$ кислота

В воде растворимы все кислотные оксиды кроме оксида кремния (IV).

2. Соль1+кислота1 соль2+кислота2

Кислородосодержащие:

$$\begin{array}{c|c} CaCl_2 + 3H_2SO_4 & CaSO_4 & +2HCl \\ Na_2SiO_3 + 2HCl & 2NaCl + H_2SiO_3 & \end{array}$$

Бескислородные

2NaCl(тв.)+ H_2 SO₄(конц.) \square 2Na₂SO₄+2HCl↑

FeS(тв.)+2HCl (конц.)
$$\square$$
 FeCl₂+H₂S \uparrow

3. Синтез из простых веществ

Водород+неметалл Паз

раствор бескислородной кислоты

 $H_2+S \square H_2S \square$ (газ сероводород);

4. Неметалл+ HNO_3 (конц.) или H_2SO_4 (конц.) \square кислота+оксиды+вода

$$2P+5H_2SO_4$$
 (конц.) $\Box 2H_3PO_4+5SO_2\Box +2H_2O$ $S+6HNO_3$ (конц.) $\Box H_2SO_4+6NO_2\Box +2H_2O$

Кислоты, особенно концентрированные,

разрушают кожу и ткани! Кислоты требуют осторожного обращения! При попадании на кожу или одежду нейтрализовать раствором соды, а затем обильно смыть водой.