электронный помощник по химии 8 класс.

Содержание:

- 1. Химический элемент.
- 2. Тренировочный материал для изучения знаков химических элементов.
- 3. Чтение химических формул.
- 4. Валентность.
- 5. Орбитально планетарная модель строения атома.
- 6. Строение электронной оболочки. (Часть 1)
- 7. Строение электронной оболочки. (Часть 2)
- 8. Ионы и ионная химическая связь.
- 9. Ковалентная неполярная связь.
- 10. Ковалентная полярная связь.

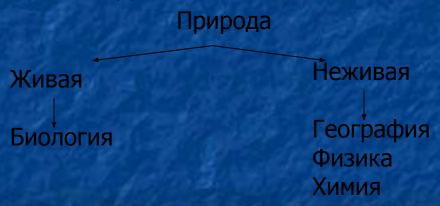
Далее Содержание

Содержание:

- 11. Молярный объем газов.
- 12. Степень окисления.
- 13. Классификация неорганических веществ.
- 14. Кристаллические решетки.
- 15. Чистые вещества и смеси.
- 16. Уравнения химических реакций.
- 17. Составление уравнений химических реакций.
- 18. Прибор для определения электролитов.
- 19. Реакции ионного обмена.
- 20. Условия протекания реакций ионного обмена.

Примечание.

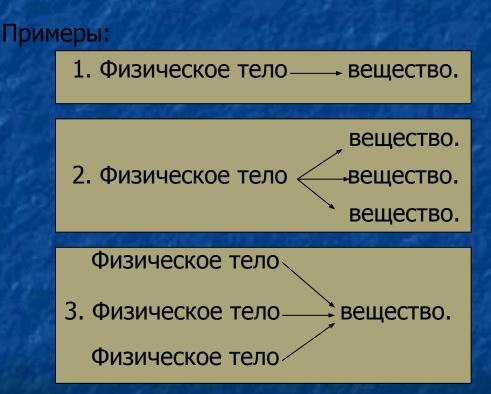
Далее Содержание Назад


Тема: Предмет изучения химии.

I. Науки.

Науки делятся на:

- гуманитарные
- математические
- естественные изучающие природу (биология, физика, география, химия)


Природа – это все, что окружает нас.

Физика и химия – это науки о веществах.

Тема: Предмет изучения химии.

II. Вещества — это то, из чего состоят физические тела.

Тема: Предмет изучения химии.

III. Свойства – это признаки по которым вещества схожи или отличаются друг от друга.

Свойства

Физические

- 1. Агрегатное состояние
 - твердое (тв)
 - жидкое (ж)
 - газообразное (г)
- 2. Плотность ($\rho \Gamma/\text{см}^3$) $\rho(\text{вода}) = 1 \Gamma/\text{см}^3$
- 3. Тепло-, электропроводность.
- 4. Температура. (t °C) $t_{\Pi\Pi}(BOJA) = 0$ °C $t_{KU\Pi}(BOJA) = 100$ °C
- 5. Цвет, форма.

Химические

1. Превращение одних веществ в другие.

*

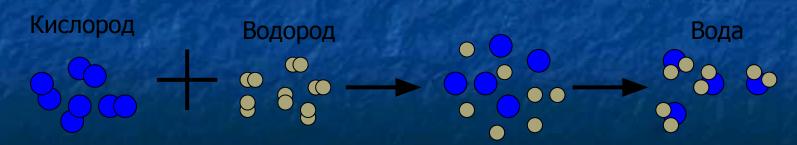
Тема: Предмет изучения химии.

IV. Химия – наука о веществах, их свойствах и превращениях.

Домашнее задание:

&1 Стр. 5-6. Выучить определения. упр. 3 Стр. 10 письменно. Проверка знаний

Тема: Превращения веществ. Роль химии в жизни человека.


I. Физические и химические явления.

Явления – это изменения происходящие с веществами.

Физические – это явления в результате которых состав вещества остается неизменным.

- -Изменение агрегатного состояния.
- -Изменение формы, размера.
- -Явления связанные с электрическим током.

Химические – это явления в результате которых из одних веществ образуются другие.

*

Тема: Превращения веществ. Роль химии в жизни человека.

II. Признаки химических явлений (реакций).

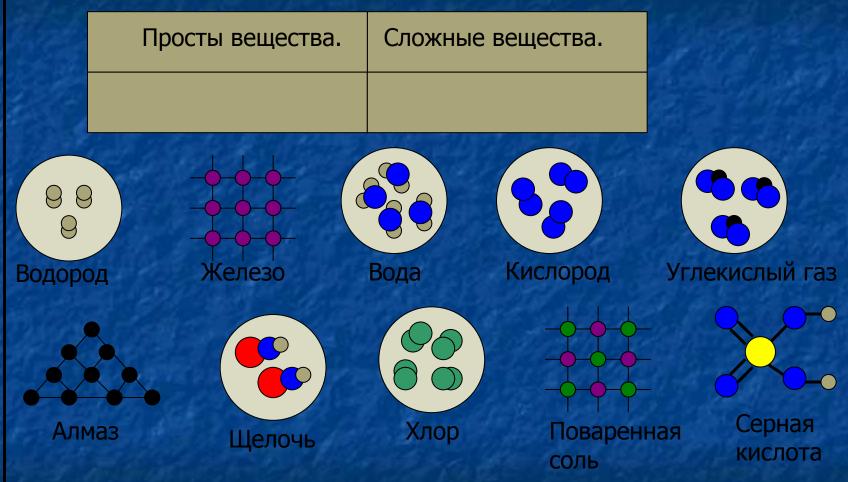
- Изменение окраски.
- Выделение тепла и света.
- Образование осадка.
- Выделение газа.
- Появление запаха.

Тема: Превращения веществ. Роль химии в жизни человека.

III. Роль химии в жизни человека.

- Производство медикаментов.
- Производство пластмасс.
- Производство взрывчатых веществ.
- Производство металлов.
- Производство удобрений.
- Производство моющих средств.
- Производство бумаги.
- Производство тканей.
- Производство красок.
- Производство косметики.

Тема: Превращения веществ. Роль химии в жизни человека.

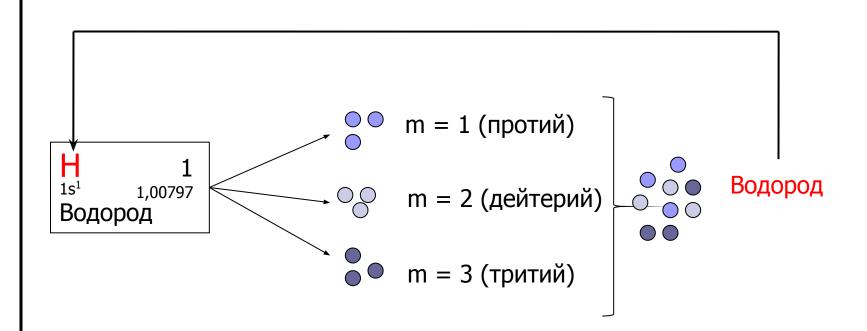

Домашнее задание:

выучить определения.

& 2 Стр.12-18

Проверка знаний:

1. Расположите вещества в два столбика.


2. Что такое химический элемент?

BEPHYTLCS K TEME

Рема: Химический элемент. Простые и сложные вещества.

Химинеевийй элемент — это определенная группа атомов.

Далее

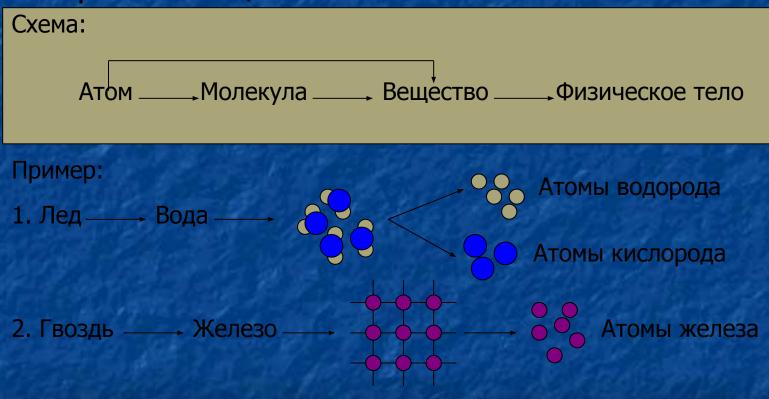
Содержание

Символы

Символ	Русское название	Латинское	Как читается в формулах	Ar	Валентность
Н	водород	гидрогениум	аш	1	I
Li	литий	литий	литий	7	I
Ве	Бериллий	Бериллиум	Бериллий		II
В	Бор	Бор	Бор		III
С	Углерод	Карбонеум	це		II,IV
N	Азот	Нитрогениум	эн		I–V
0	Кислород	Оксигенум	0		II

Симв ол	Русское название	Латинское	Как читается в формулах	Ar	Валентность
F	Фтор	Фтор	Фтор		
Na	Натрий	Натрий	Натрий		1
Mg	Магний	Магнезиум	Магний		II
Al	Алюминий	Алюминиум	Алюминий		III
Si	Кремний	Силициум	силициум		IIIV
Р	Фосфор	Фосфорум	пэ		III, V
S	Cepa	сульфур	эс		II, IV, VI

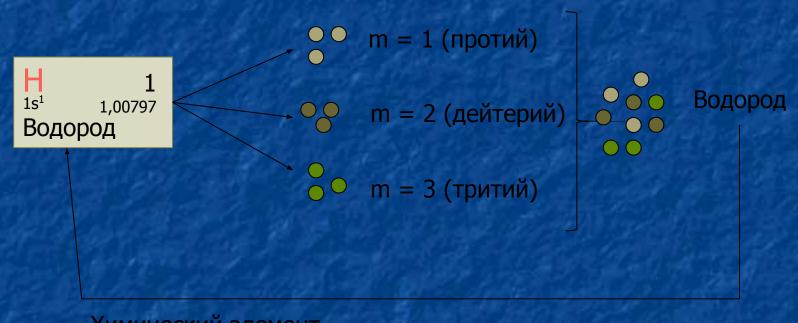
					1
Символ	Русское название	Латинское	Как читается в формулах	Ar	Валентность
CI	Хлор	Хлор	Хлор		I-VII
K	Калий	калиум	калий		I
Ca	Кальций	кальциум	кальций		II
Mn	Марганец	Манганум	Марганец		II, IV, VI,VII
Fe	Железо	Феррум	Феррум		II, III
Со	Кобальт	Кобальт	Кобальт		II, III
Ni	Никель	Никелюм	Никель		II, III


Символ	Русское название	Латинское	Как читается в формулах	Ar	Валентность
Cu	Медь	Купрум	Купрум		1,11
Zn	Цинк	Цинкум	цинкум		II
As	Мышьяк	Арсеникум	Арсеникум		III,V
Br	бром	Бром	Бром		I
Ag	Серебро	аргентум	аргентум		I
Sn	Олово	Станум	Станум		II, IV
Sb	Сурьма	Стибиум	Стибиум		III,V

Символ	Русское название	Латинское	Как читается в формулах	Ar	Валентность
I	иод	иод	иод		
Ва	Барий	Барий	Барий		II
Pt	Платина	Платинум	Платинум		11,111
Au	Золото	Аурум	Аурум		I, II
Hg	ртуть	Гидраргирум	Гидраргирум		1,11
Cr	хром	Хром	Хром		II,III, VI

Проверка знаний

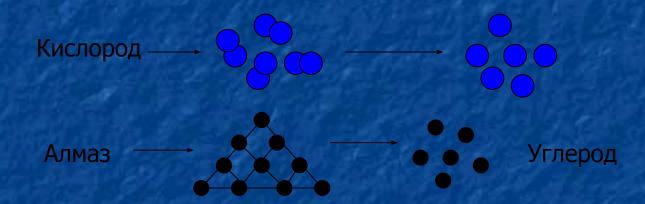
Тема: Химический элемент. Простые и сложные вещества.


I. Строение вещества.

Атом – это мельчайшая, химически неделимая частица.

Тема: Химический элемент. Простые и сложные вещества.

II. Химический элемент — это определенная группа атомов.



Химический элемент

*

Тема: Химический элемент. Простые и сложные вещества.

III. Простые вещества — это вещества состоящие из атомов одного химического элемента

Сложные вещества – это вещества состоящие из атомов разных химических элементов.

Тема: Химический элемент. Простые и сложные вещества.

Домашняя задание:

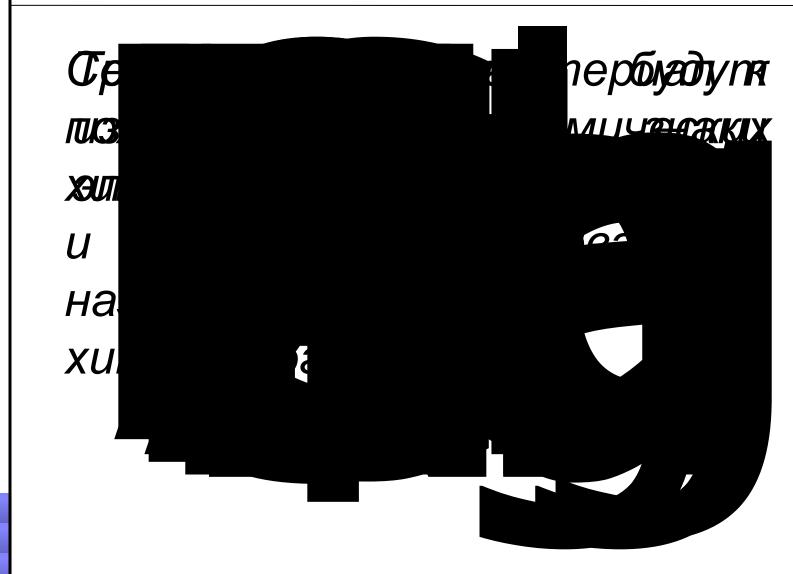
выучить определения.

& 1 Стр.6-8

Упр.6 Стр. 10

Проверка знаний:

Расположите слова в два столбика.


Вещества

Физические тела

Монета, пластмасса, медь, напильник, стакан, золото, карандаш, кислород, книга, гвоздь, водяной пар, сера, соль, капля росы.

Tema: Строение периодической системы. Знаки химических элементов.

Далее Содержание Назад

Тема: химические формулы.

Чтение химических формул.

Примеры:

- 1. NH_3 молекула эн аш три состоит из одного атома азота и трех атомов водорода.
- 2. $AI(OH)_3$ молекула алюминий о аш трижды состоит из одного атома алюминия, трех атомов кислорода и трех атомов водорода.
- 3. K_3BO_3 молекула калий три бор о три состоит из трех атомов калия, одного атома бора и трех атомов кислорода.

Далее

Содержание

Тема: Валентность.

Составление химических формул по валентности.

Правило нахождения валентности:

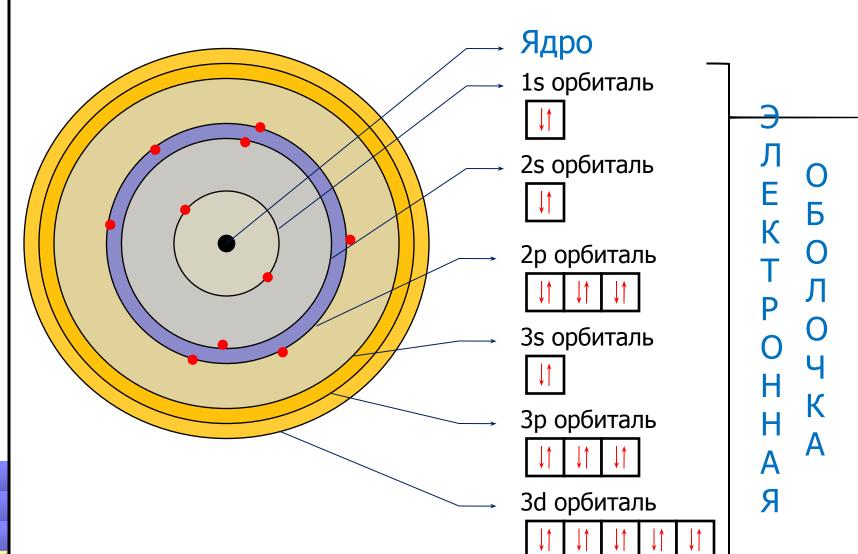
- У металла валентность ставится по номеру группы.
- У неметалла, стоящего на первом месте в формуле, ставится высшая валентность.
- У неметалла, стоящего на втором месте в формуле, ставится низшая валентность.

Пример: 120 II II O

Порядок действий:

- 1. Находим валентность химических элементов.
- 2. Находим наименьшее общее кратное.
- 3. Находим индексы.

=2


: = !

Далее Содержание Назад

Тема: Строение атома.

Орбитально – планетарное модель строение атома.

Далее Содержание

Тема: Строение электронных оболочек атомов.

Электронная оболочка — это совокупность электронов, двигающихся вокруг ядра атома.

Шисирания профессиональной распрация профессион

15

$$N = 2n^2$$

Период	Группа	\	\	\
	V 5	+1	1	1
3	P 15 30,9748 Фосфор	5		

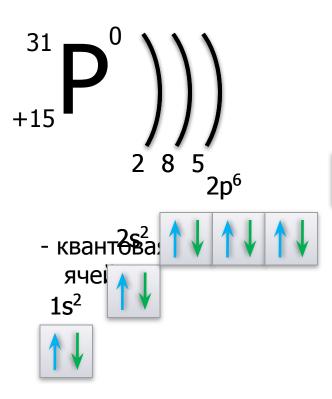
$$n = 1$$
, $N = 2 \cdot 1^2 = 2$

$$n = 2$$
, $N = 2 \cdot 2^2 = 8$

Общее число электронов е =

Проверка

Далее


Содержание

Тема: Строение электронных оболочек атомов.

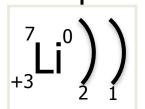
- **Энефильтиновий провитей ком уливахорильно**й. два электрона с разными спинами.

d - орбиталь

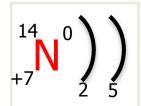
Далее

Содержание

- **Группа вертикальные столбцы** элементов сходные по своим химическим и физическим свойствам
- Основная подгруппа в нее входят элементы как малых так и больших периодов (S и P элементы)



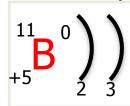
Периодическое изменение свойств элементов и простых веществ.


Повторение Проверка знаний

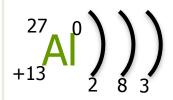
В периодах слева направо:

$$^{11}_{+5}B^{0})$$

$${}^{12}_{+6} {}^{0}))$$


$$^{16}_{+8}$$
 0

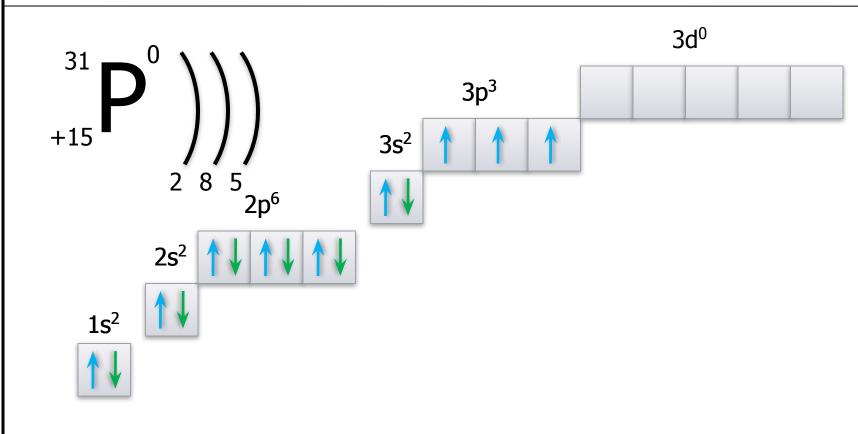
- число энергетических уровней не изменяется.
- число электронов на последнем уровне увеличивается.
- металлические свойства ослабевают.



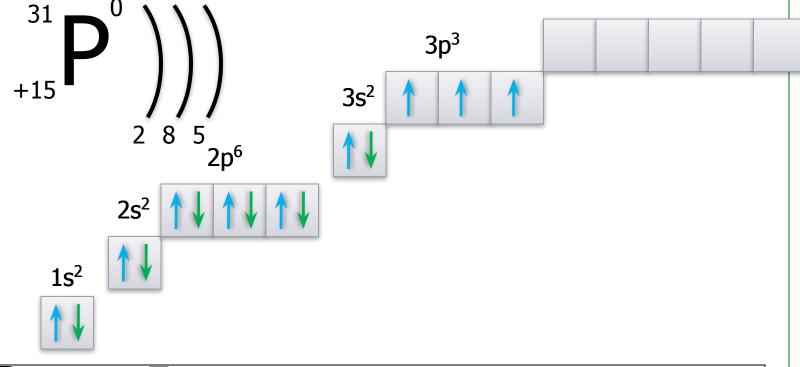
1 ема: Периодическое изменение свойств элементов и простых веществ.

II. В группах сверху вниз:

- число энергетических уровней увеличивается.



- число электронов на последнем уровне не изменяется.



- металлические свойства усиливаются.

$$_{+49}^{115}$$
In $_{2}^{0}$ $_{8}^{0}$ $_{18}^{18}$ $_{18}^{0}$ $_{3}^{0}$

- План характеристики элемента
- 2. Символ элемента Р
- Порядковый номер 15
- 4. **Ат**омная масса **31**
- 5. Состав атома 6. ₃₁Р (15 Р⁺+ 16 n⁰) +15 е⁻
- 7. Номер группы (основная или побочная подгруппа) V(основная)
- Номер периода (малый или большой) III (малый)
- 9. Электронная конфигурация(заполнение по энергетическим уровням и ячейкам), сколько электронов на внешнем уровне, спаренных не спаренных $15^225^22P^635^23P^3$

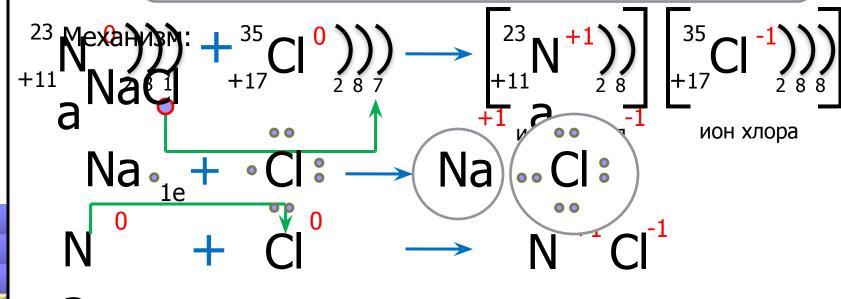
Всего 5 электронов из них: 2 спаренных и 3 не спаренных

- Металл, неметалл
- Высший оксид Р₂О₅
- Для неметалла летучее водородное соединение РН₂

проверка знаний.

Составить строение электронной оболочки элемента:

Si


Гема: Ионы и ионная химическая связь.

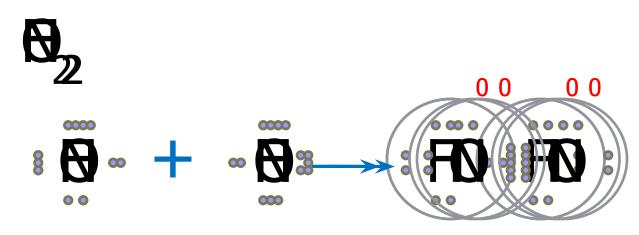
Урок 20

Химическая связь, образующуюся между ионами, называется **ионной**.

Ион – это частица образующаяся в результате отдачи или принятия электрона.

Приме Ионная связь как правило возникает между металлом и неметаллом.

Далее Содержание



TeMa: Ковалентная связь между одинаковыми атомами неметаллов.

Химическая связь, возникающая в результате образования общих электронных пар, называется ковалентной.

Связь возникающая между одинаковыми неметаллами называется ковалентной неполярной.

Пример:

Далее

Содержание

Тема: Ковалентная полярная химическая связь.

Химическая связь, возникающая в результате образования общих электронных пар, называется **ковалентной.**

Ряд неметаллов.

Связь возникающая между разными неметаллами называется ковалентной полярной.

Пример:

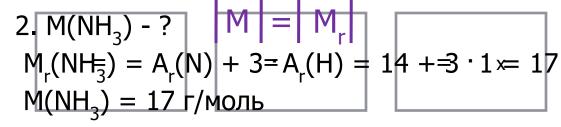
Электроотрицательность (ЭО) — это способность атрисв химического элемента притягивать к себе

Элемент с большей ЭО, при образовании ковалентной полярной связи приобретает частично отрицательный заряд (+ δ).

Элемент с меньцей ЭО, при образований соваленыю полярной связи, приобретает частично на пожительный заряд (+ δ).

Далее

Содержание


Тема: Молярный объем газов.

Молярный объем
$$V_m$$
) (л/мо N). m $|M| = |M_r|$ M_m – буквени M_m M

Мараревит собъему 89,760 лобими по молем 1 молем любого газа при нормальных условиях (22,4 л/моль).

Дано: Решение:
$$V(NH_3) = \frac{V}{N}$$
 1. $n(NH_3) - ?$ $n = \frac{V}{V_m}$ $\frac{n - \text{количество вещества (моль)}}{V_m}$

m — количество вещества (1.89.6 л $_{0}^{\circ}$ С; = 4 моль 22,4=л**/60**льм рт. ст. (101,3 кПа)

3.
$$m(NH_3) = ?$$
 $m = M \cdot n$ $m(NH_3) = 17 г/моль · 4 моль = 61 г$

Далее Содержание

ема: степень окисления.

Степень окисления — это заряд приобретаемый элементом в соединении, в результате полной отдачи ИЛИ принятия электрона.

Правила:

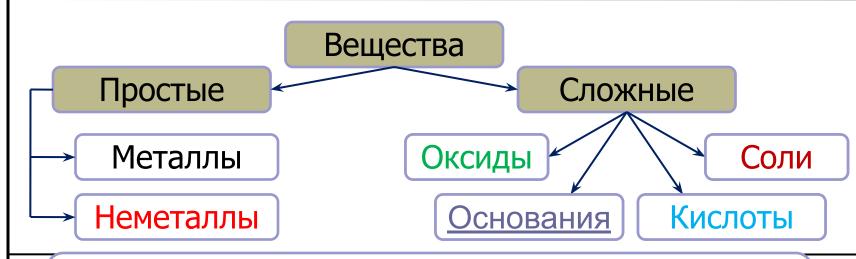
1. Степень окисления элемента в простом веществе равна 0.

$$H_2^{0}$$
; O_2^{0} ; F_2^{0} ; Cl_2^{0} ; Ca^{0} .

- 2. Оттетре рыместения немоторым злеметрым соединении:
 - H⁺¹
 - O⁻²

Пример: _____ степень окисления металя 10 втадае 3 с 6 г 2 в алентностью:

$$-Na^{+}$$
; R^{-1} ; Ca^{+2} ; Mg^{+2} ; $2Ba^{+2}$; $Ab^{+3} = 0$


- 3. Сумма степенай окисления элементов в соединении, с учетом коэффициентов, равна 0.
 - 2. О при предости пре можем определить лоборавчилу 32. Х

Далее

Содержание

Классификация веществ.

Соли — это сложные вещества, состоящие из атомов металла и кислотного остатка.

Me An – общая формула водорода и кислотного остатка.

 $H_{\mathbf{x}}$ An – общая формула

Номенклатура солей:

- 1. Записать название «кислотного остатка».
- 2. Записать название металла.
- 3. Указать валентность металла в случаи если это:
 - металл из побочной подгруппы

H₃PO₄ Фосфорная -PO₄ Фосфат

Далее

Содержание

Кислоты

Пильникова Н.Н.

Кислоты

• Сложные вещества, содержащие в своём составе кислотные остатки к которым присоединены атомы водорода способные замещаться на атомы металла. Обычно характеризующиеся диссоциацией в водном растворе с образованием ионов H⁺. Присутствие этих ионов обусловливает характерный острый вкус кислот и их способность изменять окраску химических индикаторов. По современной теории кислот, к кислотам относится более широкий круг соединений в частности и такие которые не содержат водорода.

Классификация кислот

Число атомов водорода способных замещаться с металлами в молекуле определяет основность кислоты. По количеству атомов водорода способных замещаться катионами кислоты делятся на:

Одноосновные(HF,CH₃COOH)

Двухосновные (H_2S)

 $Tpexochoвныe(H_3PO_4)$

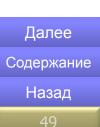
По содержанию атомов кислорода в молекуле кислоты делятся на

кислородосодержащие (H_2SO_4)

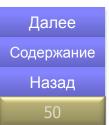
Бескислородные (H_2S)

Кислоты также делятся на

- Органические- кислоты образуемые живыми организмами. К ним относятся например этиловая и лимонная кислоты. Они являются слабыми кислотами (их растворы содержат немного ионов водорода).
- Сильными кислотами называются те кислоты, которые при растворении в воде образуют наибольшее количество ионов водорода. К сильным кислотам относятся соляная, серная и азотные кислоты. Сильные кислоты очень едкие. Это означает что они могут выжигать кожу или другую поверхность на которую попадают.



По растворению в воде кислоты делятся на:


- растворимые(HCI)
- Hерастворимые(H_2SiO_3)

В обычных условиях кислоты могут быть

- твёрдыми(H₃PO₄)
- Жидкими(HNO₃)
- Газообразными(HCI)

Формулы кислот	Название кислот	Формулы кисл. Остатков	Название кислотных остатков
HF	Плавиковая, фтороводородная	F -	фторид
HCI	Соляная, хлороводородная	Cl ⁻	хлорид
HBr	Бромоводородная	Br ⁻	бромид
HI	Иодоводородная	I-	иодид
H ₂ S	Сероводородная	S ⁻²	сульфид
H ₂ SO ₃	Сернистая	SO ₃ -2	сульфит
H ₂ SO ₄	Серная	SO ₄ -2	сульфат

Формулы кислот	Название кислот	Формулы кисл. Остатков	Название кислотных остатков
H ₂ CO ₃	Угольная	CO ₃ -2	карбонат
HNO ₃	Азотная	NO ₃	нитрат
HNO ₂	Азотистая	NO ₂ -	нитрит
H ₃ PO ₄	фосфорная	PO ₄ -3	фосфат
CH ₃ COOH	Уксусная	CH ₃ COO-	ацетат
H ₂ SiO ₃	Кремневая	SiO ₃ -2	силикат

Muim. CB-Ba Buchot.

- 1. Кислоты взаимодействуют с щелочами (а также с нерастворимыми основаниями, если получающая соль растворима в воде) с образованием солей и воды (реакция нейтрализации):
- NaOH+HCI= NaCI+H₂O
 гидроксид Na + соляная кислота= хлорид натрия+ вода

Na⁺+OH⁻ +H⁺+Cl⁻ Na⁺ + Cl⁻+ H₂0
OH⁻ +H⁺ H₂0
$$Zn(OH)_{2}$$
 2HCl \rightarrow ZnCl₂+ **2H₂O**

Гидроксид цинка +соляная кислота =хлорид цинка вода

$$Zn(OH)_{2+}^{2} 2H^{+}+2CI^{-} \rightarrow Zn^{2+}+2CI^{-} + 2H_{2}O$$

 $Zn(OH)_{2+}^{2} 2H^{+} \rightarrow Zn^{2+} + 2H_{2}O$

2.Кислоты реагируют с основными и амфотерными оксидами с образованием солей и воды:

Оксид меди + серная кислота = сульфат Си +вода

CuO+2H⁺+SO²⁻₄
$$\rightarrow$$
Cu²⁺ + SO²⁻₄ +2H₂O
CuO+2H⁺ \rightarrow Cu²⁺ +2H₂O

3. Кислоты взаимодействуют с металлами, стоящими в ряду напряжений до водорода. При этом металл вытесняет водород из кислоты

$$Z$$
n+2HCl= Z nCl $_2$ + H $_2$ ↑ Цинк + соляная кислота = хлорид Zn+водород Z n 0 +2H $^+$ +2Cl $^ \rightarrow$ Zn 2 + + 2Cl $^-$ + H $_2$ 0 ↑ Z n 0 +2H $^+$ \rightarrow Zn 2 + + H $_2$ 0 ↑

Далее

Содержание

Химические свойства кислот

II. **Еслинобразуются** постандок.

$$2Na_{2}C_{2}^{2-} + 2Na_{2}^{2}So_{4}^{2-} +$$

Далее

Содержание

<u>Кислоты кислородсодержащие</u>


реагируют с металлами после водорода, без вытеснения водорода

$$Cu+4HNO3\rightarrow Cu(NO_3)_2+2H_2O$$

$$+2NO_2 \uparrow$$

Медь +азотная кислота = нитрат меди + вода + оксид азота

```
Cu^{0}+4H^{+}+4NO_{3}^{-}\rightarrow Cu^{2+}+2NO_{3}^{-}+2H_{2}O+2NO_{2}^{\uparrow}
Cu^{0}+4H^{+}+2NO_{3}^{-}\rightarrow Cu^{2+}+2H_{2}O+2NO_{2}^{\uparrow}
```


Получение кислоты Кислородосодержащие кислоты получают

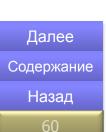
- в ходе реакции соответствующего оксида с водой:
- $P_{2}O_{5}+H_{2}O=2H_{3}PO_{4}$
- Путём вытеснения из соли более сильной кислотой Na₂SiO₂+H₂SO₄=Na₂SO₄+H₂SiO₄ Бескислородные кислоты получают
- в результате прямой реакции между соответствующим неметаллом и водородом

$$H_2 + Br_2 = 2HBr$$

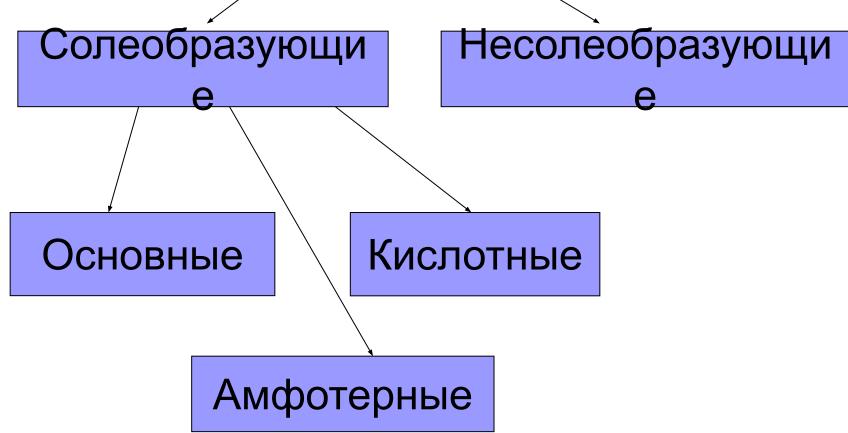
вытеснением из соли более сильной кислотой

ОКСИДЫ

Пильникова Н.Н.


Оксиды – это сложные вещества,
 состоящие из двух элементов, один из которых – кислород.

Примеры оксидов:
 Na₂O, MgO, Al₂O₃, SiO₂, P₂O₅, SO₃, Cl₂O₇

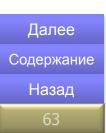


- Na₂O оксид натрия
- MgO оксид магния
- Al_2O_3 оксид алюминия
- SiO₂ оксид кремния (IV)
- P_2O_5 оксид фосфора (V)
 - SO₃ оксид серы (VI)
 - Cl_2O_7 оксид хлора (VII)

Получение оксидов

В результате реакции горения:

a)
$$2Ca + O_2 \rightarrow 2CaO$$


б) 4Li +
$$O_2 \rightarrow 2Li_2O$$

$$B) C + O_2 \rightarrow CO_2$$

Физические свойства оксидов

- Цвет: разный;
- Агрегатное состояние:

есть твёрдые, жидкие и газообразные

Химические свойства оксидов

Основный оксид

Вода

OCHOBa

a)
$$Na_2O + H_2O \rightarrow 2NaOH$$

Оксид натрия + вода — гидроксид натрия

б) BaO +
$$H_2O \rightarrow Ba(OH)_2$$

Оксид бария + вода — гидроксид бария

64

<u>Химические свойства оксидов</u>

Основный ОКСИД

$$\rightarrow$$

$$H_2O$$

a)
$$Ag_2O + 2HNO_3 \rightarrow 2AgNO_3 + H_2O$$

Оксид серебра +азотная кислота →нитрат серебра+вода

б) MgO +
$$H_2SO_4 \rightarrow MgSO_4 + H_2O$$

оксид магния + серная к-та →сульфат магния +вода

Химические свойства оксидов

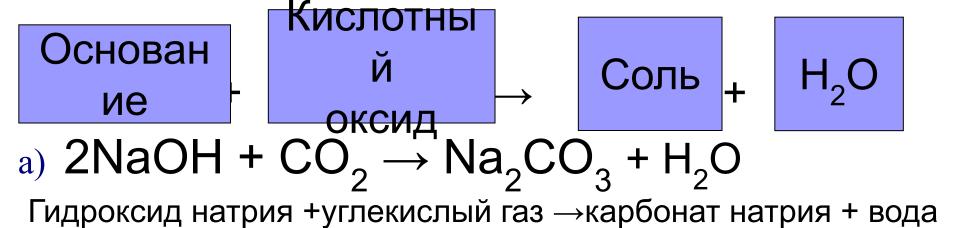
Кислотный Основный
$$\rightarrow$$
 Соль Оксид + оксид \rightarrow а) $\mathrm{Na_2O} + \mathrm{CO_2} \rightarrow \mathrm{Na_2CO_3}$

оксид натрия +оксид углерода (IV)→ карбонат натрия

б) BaO +
$$N_2O_5 \rightarrow Ba(NO_3)_2$$

оксид бария +оксид азота → нитрат бария

Запомните!


Кислотный оксид	Его кислота	
CO ₂	H ₂ CO ₃	
SiO ₂	H ₂ SiO ₃	
N ₂ O ₃	HNO ₂	
N ₂ O ₅	HNO ₃	
P_2O_5	H_3PO_4	
SO ₂	H ₂ SO ₃	
SO ₃	H ₂ SO ₄	
CI ₂ O ₇	HCIO ₄	

Кислотный оксид + Вода
$$\rightarrow$$
 Кислота в) $CO_2 + H_2O \rightarrow H_2CO_3$ Углекислый газ + вода \rightarrow угольная кислота г) $N_2O_5 + H_2O \rightarrow 2HNO_3$

Оксид азота (V) +вода \rightarrow азотная кислота

Химические свойства оксидов

б)
$$Ba(OH)_2 + N_2O_5 \rightarrow Ba(NO_3)_2 + H_2O_3$$

Гидроксид бария + оксид азота(V) → нитрат бария +вода

Химические свойства оксидов

Кислотный Основный
$$\rightarrow$$
 Соль Оксид + оксид \rightarrow а) $\mathrm{Na_2O} + \mathrm{CO_2} \rightarrow \mathrm{Na_2CO_3}$

оксид натрия +оксид углерода (IV)→ карбонат натрия

б) BaO +
$$N_2O_5 \rightarrow Ba(NO_3)_2$$

оксид бария +оксид азота → нитрат бария

Соли

Пильникова Н.Н.

Повторим

- Соли это сложные вещества,
 состоящие из атомов металла и
 кислотных остатков
- Примеры солей:
 NaCl, AlCl₃, Na₂SO₄, CaCO₃, Ca₃(PO₄)₂

Повторим

С точки зрения теории электролитической диссоциации...

- Соли это электролиты,
 диссоциирующие на катионы металла и анионы кислотных остатков.
- Уравнения диссоциации солей:

NaCl
$$\longrightarrow$$
 Na⁺ + Cl⁻
AlCl₃ \longrightarrow Al³⁺ + 3Cl⁻
Na₂SO₄ \longrightarrow 2Na⁺ + SO₄²⁻

Названия солей

Na₂S – сульфид натрия

 Na_2SO_3 — сульфит натрия

 Na_2SO_4 — сульфат натрия

 $Fe(NO_3)_2$ – нитрат железа (II)

 $Fe(NO_3)_3$ – нитрат железа (III)

Классификация солей

Средние (нормальные)

Na₂CO₃ Na₃PO₄ AICI₃

Далее

Содержание

Назад

Кислые

NaHCO₃
KH₂PO₄
K₂HPO₄

Основные

AIOHCI₂ AI(OH)₂CI

Составление формул кислых солей

$$H_2CO_3$$

NaHCO₃ гидрокарбонат натрия

Составление формул

кислых солей

$$K_2$$
HPO $_4$ K $_4$ K_4 O $_4$ O $_$

КН₂РО₄ дигидрофосфат калия

Далее Содержание Назад

Составление формул

основных солей

$$AI(OH)_3$$

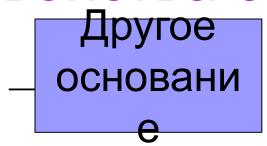
Al(OH)₂Cl дигидроксохлорид алюминия АІ СО-Н

$$AI \stackrel{\bigcirc{}-H}{<} CI$$

AI(OH)CI

гидроксохлорид алюминия Al

Далее Содержание


Назад

- *Цвет:* разный;
- *Агрегатное состояние:* твёрдые;
- По растворимости в воде есть растворимые, малорастворимые и нерастворимые.

Щёлоч ь

Другая соль

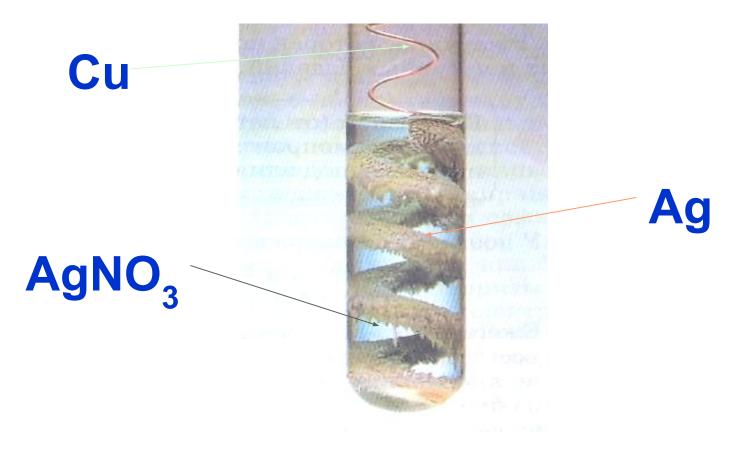
a)
$$3NaOH + FeCl_3 \rightarrow 3NaCl + Fe(OH)_3 \downarrow$$

б)
$$Ca(OH)_2 + K_2CO_3 \rightarrow CaCO_3 \downarrow + 2KOH$$

Запомните: исходные вещества должны быть растворимыми, а в результате реакции должен образовываться осадок или газ!

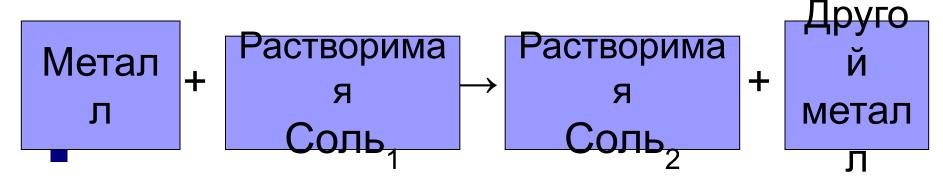
Кислот
$$_{\mathbf{a}}$$
 + Соль $_{\mathbf{KИСЛОТA}}$ + Другая $_{\mathbf{KИСЛОТA}}$ + Соль $_{\mathbf{KИСЛОТA}}$ + Соль $_{\mathbf{CОЛЬ}}$ а) $\mathbf{H_2SO_4}$ + $\mathbf{BaCl_2} \rightarrow \mathbf{2HCI} + \mathbf{BaSO_4} \downarrow$ \mathbf{G}) $\mathbf{H_2SO_4}$ + $\mathbf{Na_2CO_3} \rightarrow \mathbf{H_2O} + \mathbf{CO_2}$ + $\mathbf{Na_2SO_4}$

$$e$$
) б) $H_2SO_4 + Na_2SiO_3 \rightarrow H_2SiO_3 \downarrow + Na_2SO_4$ Запомните: эти реакции пойдут до конца, если образуется осадок или газ!

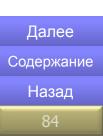

a)
$$2AgNO_3 + ZnCl_2 \rightarrow 2AgCl \downarrow + Zn(NO_3)_2$$

б)
$$BaCl_2 + Na_2SO_4 \rightarrow BaSO_4 \downarrow + 2NaCl$$

Запомните: исходные вещества должны быть растворимыми, а в результате реакции должен разовываться осадок или газ!


Назад

Взаимодействие металлов с солями


Ag +
$$Cu(NO_3)_2 \rightarrow$$

a)
$$Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$$

б)
$$Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$$

Реакция идёт, если участвует металл активнее того, что в составе соли!

Основания.

Далее

Содержание

Назад

85

Понятие об основаниях.

 Основания с точки зрения ТЭД – это электролиты, которые в водных растворах диссоциируют на катионы металла и гидроксид - анионы.

NaOH
$$\leftrightarrow$$
 Na⁺ + OH⁻
Ba(OH)₂ \leftrightarrow Ba⁺² + 2OH⁻

Основания.

Растворимые NaOH, KOH

Нерастворимые Cu(OH)2, Fe(OH)3

Классификация оснований.

2. По степени ЭД:

Основания

Сильные (L→1) Щёлочи (NaOH, КОН)

Слабые (L→0) Нерастворимые основания, NH3·H2O

Клафсификация оснований.

3. По кислотности:

Основани я.

Однокислотные NaOH, LiOH

Двухкислотные Ba(OH)2, Mg(OH)2 Трёхкислотные AI(OH)3, Fe(OH)3

м

Физические свойства.

Все основания, кроме NH₃·H₂O – твёрдые вещества, имеющие различную окраску. Мягкие на ощупь, изменяют окраску индикаторов.

- Фенолфталеин (бесцв.) + щёлочь → малиновая окраска
- Лакмус (фиолет.) + щёлочь → синяя окраска
- Метиловый оранжевый + щелочь→ желтый

Химические свойства.

1. Основание + кислота → соль + вода (реакция обмена) нейтрализации

$$2NaOH + H_{2}SO_{4} \rightarrow Na_{2}SO_{4} + 2H_{2}O$$

$$OH + H^{+} \rightarrow H_{2}O$$

$$NaOH + H_{2}SO_{4} \rightarrow NaHSO_{4} + H_{2}O$$

$$OH + 2H^{+} + SO_{4}^{2-} \rightarrow HSO_{4}^{--} + H_{2}O$$

$$Cu(OH)_{2} + 2HCI \rightarrow CuCl_{2} + 2H_{2}O$$

$$Cu(OH)_{2} + 2H^{+} \rightarrow Cu^{+2} + 2H_{2}O$$

м

Химические свойства.

2. Основание + кислотный оксид →

$$P2O5 + 6KOH \rightarrow 2K3PO4 + 3H2O$$

$$P2O_5 + 6OH^- \rightarrow 2PO_4^{3-} + 3H_2O$$

$$2OH^{-} + N_{2}O_{5} \rightarrow 2NO_{3}^{-} + H_{2}O$$

Химические свойства.

```
3. Щёлочь + соль \rightarrow новое основание +
      + новая соль (реакция обмена)
2KOH + FeSO_4 \rightarrow Fe(OH)_2 \downarrow + K_2SO_4
     2OH^{-} + Fe^{+2} \rightarrow Fe(OH)_{2\downarrow}
Б)NH4Cl + NaOH <sup>t</sup> NaCl + NH3↑ + H2O
   NH4^+ + OH^- \rightarrow NH3\uparrow + H2O
B) Ca(OH)_2 + K_2CO_3 \rightarrow CaCO_3 + 2KOH
```

Химические свойства.

4. Нерастворимое основание →

→ ОКСИД МЕТАЛЛА + ВОДА (при t°C) (реакция разложения)

$$Fe(OH)_2 \rightarrow FeO + H_2O$$

 $Cu(OH)_2 \rightarrow CuO + H_2O$

м

Особые свойства оснований.

1. Качественная реакция на Ca(OH)2 – помутнение известковой воды:

2. Качественные реакции на ион Ba⁺²:

$$SO4^{2-} + Ba^{+2} \rightarrow BaSO4 \downarrow$$

 $2F^{-} + Ba^{+2} \rightarrow BaF_2 \downarrow$

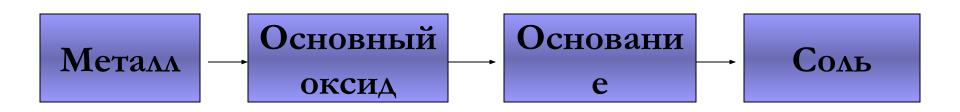
M

Выполните задания.

- Дайте характеристику кремниевой кислоты по всем изученным признакам.
- Напишите уравнения реакций:
- 1. Азотная кислота + оксид кальция;
- 2. Соляная кислота + силикат натрия;
- 3. Фосфорная кислота + гидроксид калия;
- 4. Бромоводородная кислота + нитрат серебра;
- Железо + соляная кислота.
- Почему следующие реакции не идут?
- Сульфат меди + соляная кислота;
- 2. Хлорид цинка + азотная кислота.

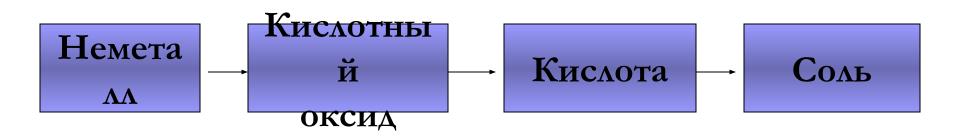
M

Закрепление.

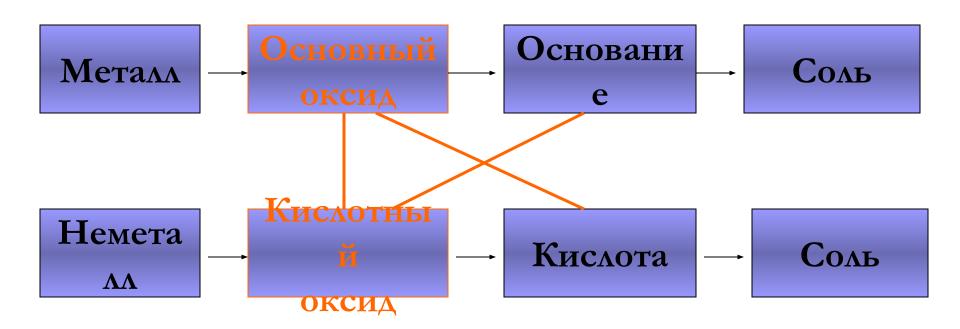

1. Составьте молекулярные уравнения реакций:

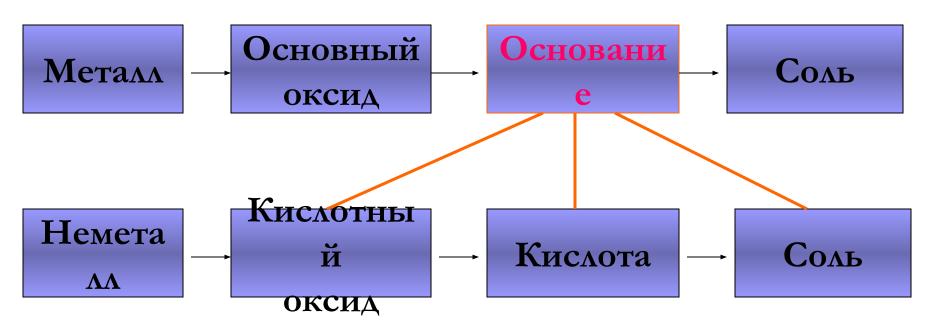
$$AI^{+3} + 3OH^{-} \rightarrow AI(OH)_{3\downarrow}$$

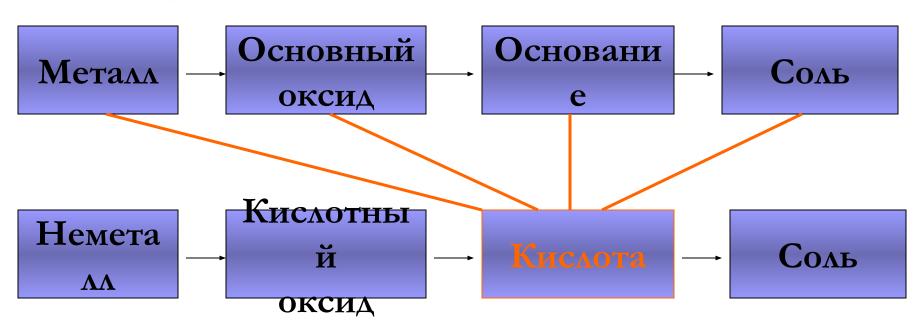
2. Напишите уравнения реакций, характеризующие химические свойства гидроксида калия. Домашнее задание.

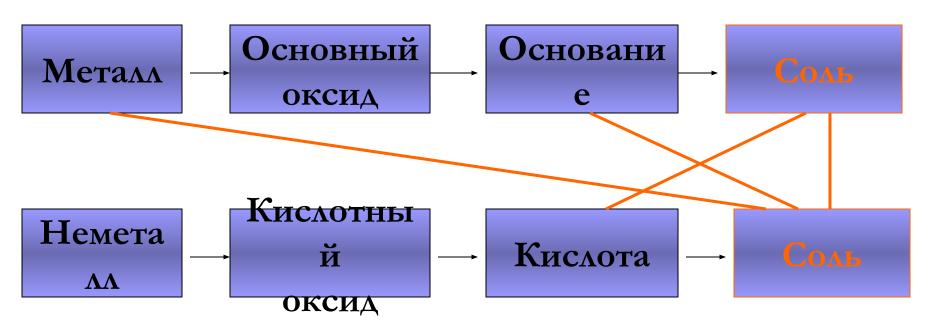

■ § 39, yпр. 3, 5

Генетический ряд металла

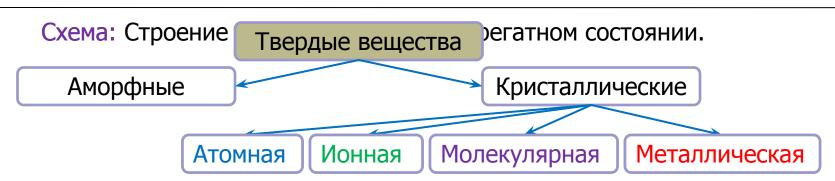


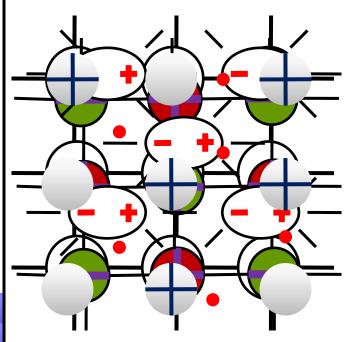

$$Li \rightarrow Li_2O \rightarrow LiOH \rightarrow Li_2SO_4$$


Генетический ряд неметалла



$$P \rightarrow P_2O_5 \rightarrow H_3PO_4 \rightarrow K_3PO_4$$



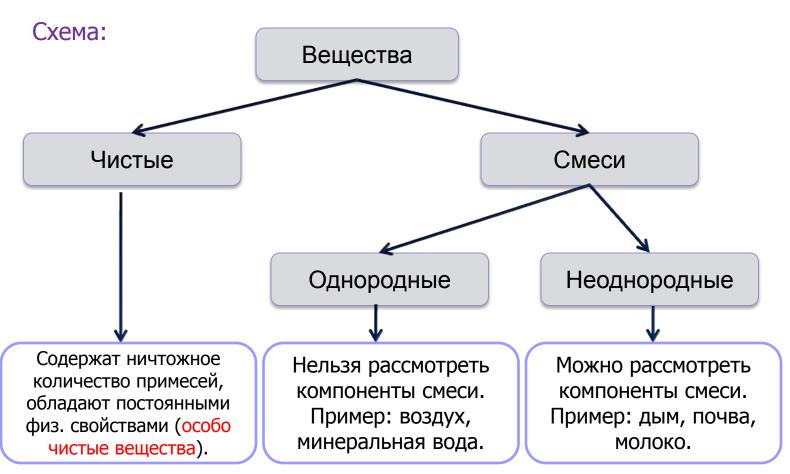


Тема: Кристаллические решетки.

Характеристика кристаллической решетки:

- **менал**ла иполь (молекула)
- ение вердые, практически
- алмаз, кварц, кремнезем. Водом женины неметаллов.

Далее


Содержание

Назад

Тема: Чистые вещества и смеси.

Виды смесей.

Далее

Содержание

Назад

106

Тема: Уравнения химических реакций.

Уравнение химической реакции – это условная запись химического процесса, посредством химических знаков и символов.

Пример:

$$N_2$$
; + $H_2 \xrightarrow{t^0C \text{ кат.}} NH_3$

- реагирующие вещества
- продукты реакции
- взаимодействие
- условие протекания реакции

Далее

Содержание

Назад

СОСТАВЛЕНИЕ УРАВНЕНИЙ ХИМИЧЕСКИХ РЕАКЦИЙ

Пример: Составить уравнение реакции взаимодействия фосфора и кислорода.

- 9. Определи: есть ли еще не уравненные (не соединенные) атомы:
 - а) Если есть, то вернись к пункту 3.
 - б) Если нет, то ВСЁ.

$$4:1=4$$

$$4:4=1$$

Материал взят из презентации

Лебедева Сергея Николаевича

ГОУ школа-интернат V-VI вида. Костромской области.

Далее Содержание

$$10:5=2$$

Назад

Рема: Электролитическая диссоциация.

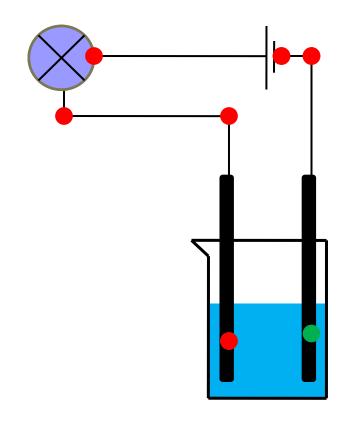
Электролиты — это вещества, водные растворы которых проводят электрический ток

Проверка электропроводности раствора:

Электропроводность раствора хлорида натрия (NaCl)

Начать

Закончить


NaCl - электролит

Электропроводность раствора сахара

Начать

Закончить

сахар - неэлектролит

Далее

Содержание

Назад

109

Реакции ионного обмена.

РИО (реакции ионного обмена) — это реакции протекающие между электролитами.

Пример: Взаимодействие хлорида бария с сульфатом натрия. Порядок действий:

4. Валичани путарин на предпримення в примення в прим

Далее

Содержание

Назад

Тема: Условия протекания реакций ионного обмена.

II. Пости образуум сяястандок.

$$2N_{4} + CO_{3}^{2-} + 2H^{+} + SO_{4}^{2-} + BaSO_{4} + + H_{2}Q + CO_{2}$$

$$+ CO_{3}^{2-} + 2H^{+} + SO_{4}^{2-} + BaSO_{4} + + + H_{2}Q + CO_{2}$$

III. Если образуется вода.

Далее

Содержание

Назад

Образование простого вещества

Mg + 2HCl
$$\rightarrow$$
 MgCl₂ + H_{2↑}
Mg⁰ + 2H⁺ + $\cancel{2}$ Cl $^- \rightarrow$ Mg²⁺ + $\cancel{2}$ Cl $^-$ + H⁰_{2↑}
Mg⁰ + 2H⁺ \rightarrow Mg²⁺ + H⁰_{2↑}
CuO + 2HCl \rightarrow CuCl₂ + H₂O
CuO + 2H⁺ + $\cancel{2}$ Cl $^- \rightarrow$ Cu²⁺ + $\cancel{2}$ Cl $^- \rightarrow$ Cu²⁺ + H₂O

ТОТО ОСЕРЖИТСЯ САЛИЦИЛОВАЯ КИСЛОТА В ПОМИДОРАХ СОДЕРЖИТСЯ САЛИЦИЛОВАЯ КИСЛОТА

- Уксус получаемый из винограда содержит слабую кислоту называемую этиловой.
- В пчелином яде тоже содержится кислота. Она может быть нейтрализована мылом которое является щелочью.
- Цветные отметины на коже морских слизней содержат кислоту, отвратительную на вкус. Это удерживает хищников от поедания слизней.
- Таблетки от несварения желудка содержат щелочи нейтрализующие кислоты вырабатываемые в желудке.

Mittepechble wartbl

- Кокосовое масло содержит жирную кислоту, называемую лауриловая кислота.
- Муравей при укусе впрыскивает порцию метиловой кислоты относящийся к группе карбоксильных.
- Этиловая кислота применяется в производстве полиэстера, из которого получают очень тонкие волокна. Затем эти волокна окрашивают и применяют в изготовлении швейных ниток.
- Зубная паста содержит щелочь которая нейтрализует кислоты во рту.

RACTOTE B TOUBE.

- Кислотность почвы— свойство почвы, обусловленное наличием водных ионов в почвенном растворе и обменных ионов водорода и алюминия в почвенном поглощающем комплексе. Повышенная кислотность почвы нейтрализуется известкованием. Некоторые растения например азалии и рододендрон хорошо растут именно на кислотных почвах. Цветы гортензии имеют синий цвет если почва под ней кислотная и розовый -- если она растёт на щелочной.
- Когда листья облетают и разлагаются они образуют гуминовую кислоту, которая повышает кислотность почвы.

Pochophan kuchora

Это одно из наиболее важных соединений фосфора (v). Представляет собой бесцветные кристаллы, легкоплавкие, расплывающиеся на воздухе, смешивающиеся с водой в в любых количествах. Концентрированные кислоты отличаются высокой вязкостью. Это объясняется тем, что в твёрдых кристаллах и в концентрированной кислоте действуют межмолекулярные водородные связи. В водной среде фосфорная кислота – средней силы. Это наиболее устойчивая из кислот образуемая фосфором. Её кристаллы плавятся при 42° с. Прекрасно растворяются в воде. Фосфорная кислота проявляет все важнейшие свойства типичных кислот.

Кислотные дожди.

• Кислотные дожди(кислые дожди), атмосферные осадки(в т.ч. снег), подкисленные (рН ниже 5,6) из- за повышенного содержания в воздухе промышленных выбросов главным образом SO₂,NO₂,HCI и др. В результате попадания кислотных дождей в поверхностный слой почвы и водоёмы развивается подкисление, что приводит к деградации экосистем, гибели отдельных видов рыб и др. водных организмов. Сказывается на плодородие почв, снижение прироста лесов и их усыхании. Кислотные дожди характерны для стран Зап. и Сев Европы, для США, Канады, промышленных районов Российской Федерации, Украины и др.

Коллекция учебных динамических слайдов по химии 8 класс.

Если, разработанные мною слайды, пригодятся Вам в работе, я буду очень рад. По ходу просмотра могли возникнуть вопросы или замечания, которые стоит исправить, не поленитесь дайте знать.

Возможно у вас есть собственные, подобные разработки. Я могу их обработать и разместить рядом с указанием вашего авторства. Может быть в будущем получится отличная разработка, которая поможет многим при подготовки к урокам. Надеюсь, что заинтересовал Вас, пишите Верьте в себя и у Вас все получится 😌

Далее

Содержание

Назад