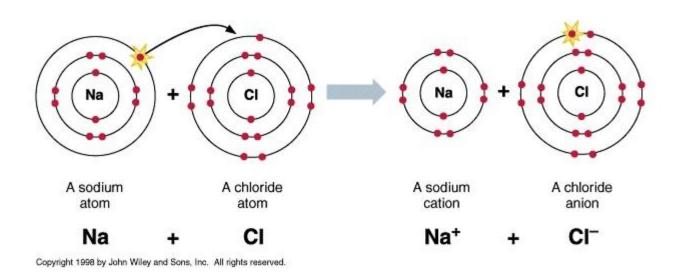

Окислительновосстановительные реакции.Электролиз.

План лекции

- 1. Основные понятия и определения.
- 2.Метод электронного баланса.
- 3. Классификация ОВР.
- 4. Значение ОВР.
- 5. Электролиз как окислительновосстановительный процесс; практическое использование.


Чем заняты эти парни?

• Кто из них натрий, кто хлор?

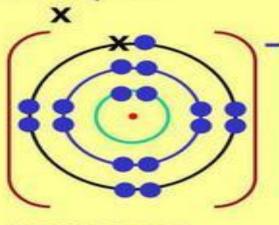
Как атомы превращаются в ионы

• Почему атом натрия *отдает*, а атом хлора *присоединяет* электрон?

ЭО – способность *удерживать* электроны

Увеличение электроотрицательности

H Hydrigon 1,00794																	He
3	4											5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.94L	Regiteen 9.012182											10.811	Carbon 12,0107	Navagen 14.00674	Oxygen 15,9994	Resiste 18,9984032	5mm 20,1791
11	12											13	14	15	16	17	18
Na 500 an 12.000 3778	Mg Magnetion 24,3050								2000			Al 26.981538	Si 54-on 28.0855	P Phosphores 30.973761	S Nate 32,066	CI (Monte: 35.4527	Ar Arpm 10.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K 2010/083	Ca Calcium 40.078	Sc 5cardon 44.955910	Ti Titeracir 47,867	V Vanadien 50.9415	Cr 51.9961	Mn Manganose 54.938049	Fe box 55.845	Co Cobub. 58,933200	Ni Noted 58,4934	Cu Copper 63,546	Zn 65.39	Ga Galtant 69.723	Ge Germanian 72,41	As Attents 24,92160	Se Selement T8.96	Br fromno 79,904	Kr Krypon 83.80
37	38	39	40	41	42	43	- 44	45	46	47	48	49	50	51	52	53	54
Rb Rabidiani 85.4678	Sr Struction 87.62	Y Ynsus 88,90585	Zr 20000000 91,224	Nb Notion 92,90638	Mo Mohdenen 95,94	Tc Technoloss (98)	Ru Ratheniera 101.07	Rh Rhodian 102,90550	Pd Palladum 106,42	Ag Shor 107,8682	Cd Caterian 112,411	In Indian 114.818	Sn 118.710	Sb Antonior 121,760	Te Tellutum 127,60	1 lodow 126,90447	Xe Xence 131,29
55	56	57	72	73	74	75	76	77	.78	79	80	81	82	83	84	85	86
Cs Crision 32:00545	Ba Ramon 137,327	La tamboran 138,9055	Hf Hattans 178.49	Ta Tambee (80,9479	W Temphere 183,84	Re Blooms 186,207	Os 0000000 190.23	Ir 192.217	Pt Plane 195,078	Au 196,96655	Hg Marriery 200.59	TI Balton 204,3833	Pb 1 real 207.2	Bi (fixed) 208.98038	Po Potomier (209)	At (210)	Rn (222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	0.000000	112001	1777	Next (c)
Fr Finction (223)	Ra Radian (226)	Ac (223)	Rf Redschirdson (261)	Db Dubraica (262)	Sg Suborgene (263)	Bh Bolerium (262)	Hs Hasian (265)	Mt Memorium (286)	(269)	(272)	(277)	A 1000-00	11.10200		d.		


Правило октета

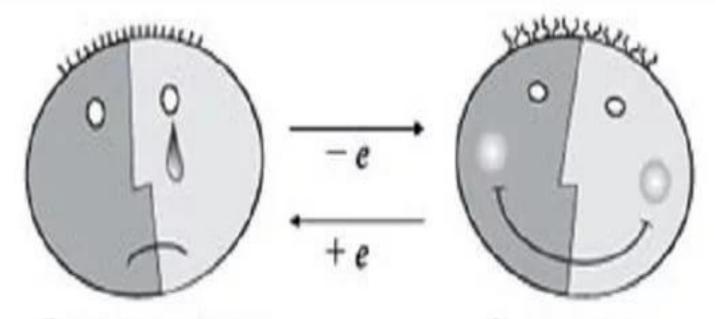
Образование ионов из атомов

Переносится 1 электрон

11Na+ 2, 8

хлорид-ион

17Cl- 2, 8, 8



Степень окисления (СО)

- Это условный заряд на атоме элемента в соединении, рассчитанный исходя из предположения, что все общие электронные пары перешли от менее электроотрицательного (ЭО) к более ЭО атому.
- Не путать СО с валентностью !!!

Важное определение

• <u>OBP</u> - это такие химические реакции, в которых происходит передача ЭЛЕКТРОНОВ от одних частиц (атомов, молекул, ионов) к другим, в результате чего <u>изменяется степень окисления</u> атомов, входящих в состав этих частиц.

Восстановитель повышает степень окисления, — е, окисление Окислитель понижает степень окисления, + е, восстановление

Правила расчета степени окисления (СО)

- 1.Сумма СО всех атомов в частице равна заряду этой частицы.
- 2. Более электроотрицательным атомам соответствует более низкая СО.
- 3. Щелочные металлы, фтор, бор, алюминий *ИМЕЮТ ПОСТОЯННЫЕ* степени окисления
- 4. Максимальная СО равна номеру группы в *ПС* (*есть* исключения).

Атомы имеющие постоянную степень окисления

-2	•О (исключение составляет O ⁺² F ₂ ,H ₂ O ₂ ⁻¹⁾
-1	•Н в соединениях металлов
+1	•H, Ag,
	•Все элементы IA группы (Li, Na, K, Rb, Cs, Fr)
+2	Be, Mg, Ca, Sr, Ba (все элементы IIA группы), Zn
+3	В, AI (все элементы IIIA группы)
0	Атомы в молекулах простых веществ
	и атомы в свободном виде
	(H ₂ ⁰ , O ₂ ⁰ , Cl ₂ ⁰ , H ⁰ , O ⁰ , Cl ⁰ , Al ⁰)

постоянная степень окисления **Me A групп** совпадает с номером группы в ПСХЗ МуShared

Переменные СО серы

```
{
m S}^{-2} s^2p^6 — восст. кисл. {
m H}_2{
m S}, {
m Na}_2{
m S} {
m S}^0 s^2p^4 окисл. восст. — {
m S}
{
m S}^{+4} s^2p^0 окисл. восст. кисл. {
m SO}_2,\,{
m H}_2{
m SO}_3,
                                                      Na_2SO_3
S^{+6} s^0p^0 окисл. — кисл. SO_3, H_2SO_4,
```

Переменные СО атома азота

$$N^{-3}\ s^2p^6$$
 — восст. осн. — NH_3 , NH_4Cl $N^0\ s^2p^3$ окисл. восст. — N_2 $N^{+3}\ s^2p^0$ окисл. восст. — кисл. HNO_2 , KNO_2 $N^{+5}\ s^0p^0$ окисл. — $KUCJ$. HNO_3 , KNO_3

СО железа в его соединениях

$$+ \text{VII} + \text{FeO}_4$$

$$+ \text{VI} - \text{FeO}_4^{2-}, \text{K}_2 \text{FeO}_4, \text{BaFeO}_4$$

$$+ \text{III} - \text{Fe}^{3+}, \text{Fe}_2 \text{O}_3, \text{FeO(OH)}, \text{Fe}_2 (\text{SO}_4)_3, \text{FeCl}_3, \text{NaFeO}_2, \text{Na}_3 [\text{Fe(OH)}_6]$$

$$+ \text{II} - \text{Fe}^{2+}, \text{FeO}, \text{Fe(OH)}_2, \text{FeSO}_4, \text{FeCl}_2, \text{FeS}$$

$$0 - \text{Fe}$$

Определите степени окисления

<u>элементов</u>

$$AI_{2}O_{3}$$
 — $AI_{2}^{+3}O_{3}^{-2}$
 $Ca_{3}N_{2}$ — $Ca_{3}^{+2}N_{2}^{-3}$
 $K_{2}Se$ — $K_{2}^{+1}Se^{-2}$
 $P_{2}O_{5}$ — $P_{2}^{+5}O_{5}^{-2}$
 $CI_{2}O_{7}$ — $CI_{2}^{+7}O_{7}^{-2}$
 $As_{2}O_{3}$ — $As_{2}^{+3}O_{3}^{-2}$

Окислительновосстановительные реакции

$$Mg + Cl_2 = MgCl_2$$

 $Mg^0 + Cl_2^0 = Mg^{+2}Cl_2^{-1}$

- Mg^o 2e → Mg⁺² восстановитель (окисляется)
- Cl₂⁰ + 2e → 2Cl-1 окислитель (восстанавливается)

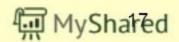
Основные понятия

• *Окислитель (Ох)* – частица, которая в ходе ОВР *приобретает* электроны. **Восстановитель (Red)** – частица, которая в ходе OBP *отдает* электроны. Восстановление – процесс, в ходе <u>которого окислитель приобретает</u> электроны и переходит в сопряженную восстановленную форму. Окисление – процесс, в ходе которого <u>восстановитель отдает электроны и</u> переходит в сопряженную окисленную форму.

Может ли реакция протекать справа налево?

```
Fe + CuSO<sub>4</sub> = FeSO<sub>4</sub> + Cu↓
Восст-ль Ок-ль
 Zn + CuSO_4 = ZnSO_4 + Cu \downarrow
Восст-ль Ок-ль
```

Направление ОВР


• Термодинамические процессы, в том числе ОВР, протекают самопроизвольно только в случае <u>уменьшения</u> свободной энергии Гиббса (G), m e. когда из <u>более</u> сильных окислителя и восстановителя образуются менее сильные окислитель и восстановитель, соответственно.

Связь энергии Гиббса и ЭДС

$$\Delta \mathbf{G} = -\mathbf{n} \cdot \mathbf{F} \cdot \mathbf{9} \mathbf{\mathcal{I}} \mathbf{C} \tag{4}$$

Если ЭДС > 0, то реакция возможна.

Если ЭДС < 0, то реакция невозможна.

Стандартный окислительно-восстановительный потенциал (Е0)

• <u>ЭДС = Е₀ ок.формы = Е₀ восст формы.</u> Количественной характеристикой ОВ способности веществ и является E₀ -стандартный окислительновосстановительный потенциал. Чем больше положительное значение Е0 (В), тем более сильным является окислитель.

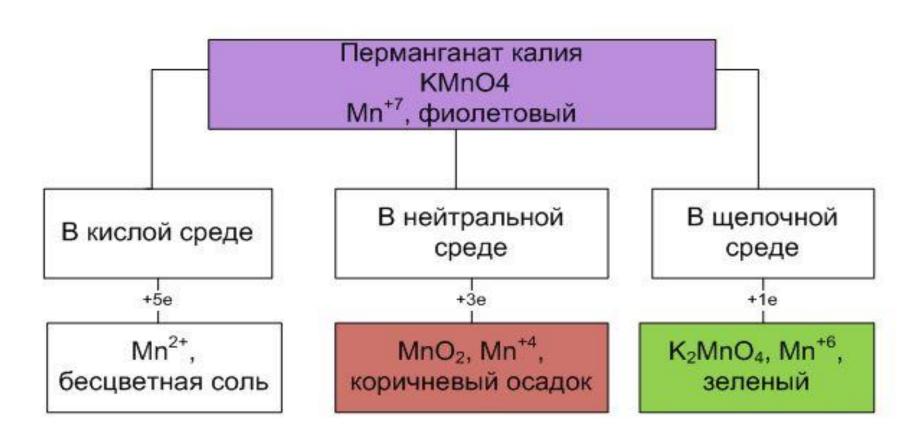
Направление ОВР

- E(Zn2+/Zn) = -0.760 B
- E(Cu2+/Cu) = +0.337 B

$$Zn^0$$
 - 2e \rightarrow Zn^{2+}
 $Cu^{2+} + 2e \rightarrow$ Cu^0

$$Zn^0 + Cu^{2+} \rightarrow Zn^{2+} + Cu^0$$

 $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$



Сильные окислители:

- Фтор (F₂) и другие галогены
- Кислород (О2)
- Озон (Оз)
- HNO₃
- H₂SO₄
- KMnO₄

Вещества, содержащие элементы в высших степенях окисления

Зависимость ОВ способности от рН

Сильные восстановители:

- Металлы
- Водород (Н₂)
- Монооксид углерода (СО)
- Углерод (С)
- Сероводород (H₂S)
- Аммиак (NH₃)

Вещества, содержащие элементы в <u>низших</u> степенях окисления

Метод электронного баланса

Пример

Взаимодействие сульфата железа (2) с перманганатом калия в кислой среде (H+). 1.Напишем уравнение реакции. Расставим степени окисления.

$$^{+1}$$
 $^{+7}$ $^{-2}$ $^{+6}$ $^{-2}$ $^{+6}$ $^{-2}$ $^{+1}$ $^{+6}$ $^{-2}$ $^{+3}$ $^{+6}$ $^{-2}$ $^{+3}$ $^{+6}$ $^{-2}$ $^{+3}$ $^{+6}$ $^{-2}$ $^{+6}$ $^{-2}$ $^{-2}$ $^{+6}$ $^{-2}$ $^{-$

Метод электронного баланса

7.
$$P + HNO_3 + H_2O \longrightarrow H_3PO_4 + NO$$
 $P - 5e^- \longrightarrow P$
 $P + 5$

 $3P + 5HNO_3 + 2H_2O \longrightarrow 3H_3PO_4 + 5NO$

$$HCl + KMnO_4 \longrightarrow Cl_2 + KCl + MnCl_2 + H_2O$$

$$Mn^{+7} + 5e^{-} \xrightarrow{\text{восстановление}} Mn^{+2} \qquad 5 \qquad 2$$
 $2 \text{ Cl}^{-1} - 2e^{-} \xrightarrow{\text{окисление}} \text{Cl}_2^0 \qquad 2 \qquad 5$

$$16 \text{ HCl} + 2 \text{ KMnO}_4 \longrightarrow$$

$$\rightarrow$$
 5 Cl₂ + 2 KCl + 2 MnCl₂ + 8 H₂O

Классификация окислительновосстановительных реакций

- Реакции межмолекулярного окисления
 2Al⁰ + 3Cl₂⁰ → 2Al⁺³ Cl₃⁻¹
- Реакции внутримолекулярного окисления $2KCl^{+5}O_3^{-2} \rightarrow 2KCl^{-1} + 3O_2^{0}$
- Реакции диспропорционирования, дисмутации (самоокисления-самовосстановления):

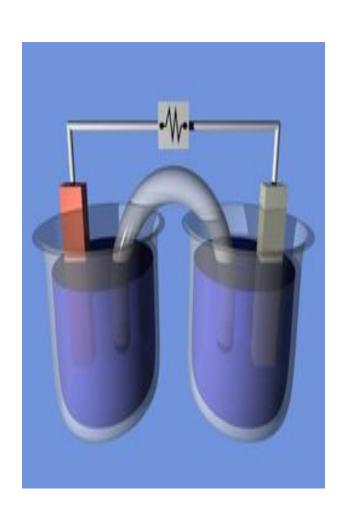
$$3\text{Cl}_2^0 + 6\text{KOH}_{(rop.)} \rightarrow \text{KCl}^{+5}\text{O}_3 + 5\text{KCl}^{-1} + 3\text{H}_2\text{O}$$

 $2\text{N}^{+4}\text{O}_2 + \text{H}_2\text{O} \rightarrow \text{HN}^{+3}\text{O}_2 + \text{HN}^{+5}\text{O}_3$

Роль ОВР в современном мире

В природе

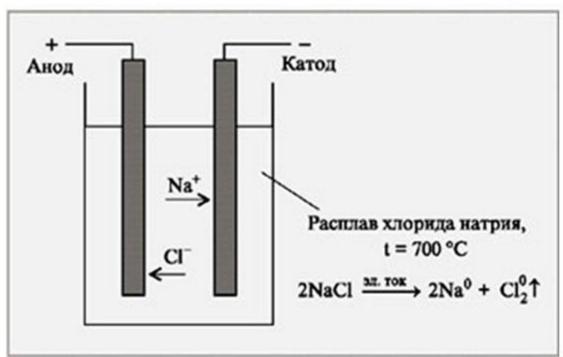
- Дыхание, фотосинтез.
- Обмен веществ в живых организмах
- Коррозия
- Брожение и гниение


В жизнедеятельности человека

- Сгорание топлива
- Электролиз и выплавка металлов
- Гальванические и топливные элементы

Роль ОВР

Электролиз



• Окислительновосстановительный процесс разложения электролитов под действием постоянного электрического тока.

Сущность электролиза!

• Состоит в том, что электрический ток может быть сильным окислителем и восстановителем. За счет его энергии могут протекать те реакции, которые самопроизвольно протекать не могут, а следовательно, могут быть получены те вещества, которые другими способами получить затруднительно.

Электролиз расплава хлорида натрия

катод (–) (Na
$$^+$$
): Na $^+$ + e = Na 0 ,

анод (+) (Cl⁻):
$$2Cl^{-} - 2e = Cl_2^0$$

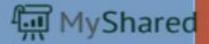
- на катоде всегда идёт процесс восстановления,
 - на аноде всегда идёт процесс окисления

Электролиз растворов

 При электролизе растворов наряду с процессами восстановления катионов и окисления анионов вещества на электродах, могут восстанавливаться или окисляться и молекулы воды.

Правила электролиза растворов

- Процесс на катоде не зависит от материала катода, а зависит от положения металла в электрохимическом ряду напряжений
- Процесс на аноде зависит от материала анода и от природы аниона
- 3. Если анод нерастворимый, т.е. инертный (уголь, графит, платина, золото), то результаты зависят от анионов кислотных остатков.
- Если анод растворимый (железо, медь, цинк, серебро и все металлы, которые окисляются в процессе электролиза), то независимо от природы аниона всегда идёт окисление металла анода.


Сравнение величин электродных потенциалов приводит к выводу:

Катодный процесс:

- 1. В растворах солей металлов, стоящих в ЭХН левее Al, происходит катодное восстановление воды.
- 2. В растворах солей металлов, стоящих в ЭХН правее водорода, происходит восстановление металла.
- 3. В растворах солей металлов, находящихся между Al и H2, возможно одновременное восстановление металла и молекул воды

Анодный процесс:

- 1. В растворах, содержащих анионы кислородсодержащих кислот, происходит анодное окисление воды.
- 2. В растворах, содержащих анионы бескислородных кислот (кроме F⁻), происходит анодное окисление аниона.

Таблица. Катодные процессы в водных растворах солей

Электрохимический ряд напряжений металлов

Li, K, Ca,	Mn, Zn, Fe,	H ₂	Cu, Hg, Ag, Pt,
Na, Mg, Al	Ni, Sn, Pb		Au
2H ₂ O+2e ⁻ =H ₂ ↑+2OH ⁻	$Me^{n+} + ne^{-} = Me^{0}$ $2H_2O + 2e^{-} = H_2\uparrow + 2OH^{-}$		Me ⁿ⁺ +ne [−] =Me ⁰ ∰ MyShared

НА АНОДЕ ОКИСЛЯЮТСЯ АНИОНЫ БЕСКИСЛОРОДНЫХ КИСЛОТ, ОН- ИЛИ МОЛЕКУЛЫ ВОДЫ

- * $2CF 2e^- = CI_2$ $2H_2O 4e^- = O_2 + 4H^+$ $4OH^- - 4e^- = 2H_2O + O_2$
- Анионы кислородосодержащих кислот не окисляются, так как их стандартный потенциал намного превышает потенциал

воды
$$2SO_4^{2-} - 2e^- = S_2O_8^{2-},$$
 $E^0 = +2,01$ В

поэтому вместо них окисляется вода:

$$2H_2O - 4e^- = O_2 + 4H^+, E^0 = 1,228 B$$

Электролиз раствора NaCl

NaCl
$$\rightarrow$$
 Na⁺ + Cl⁻
K(-) Na⁺, H2O

2H2O - 2e \rightarrow H2 + 2OH⁻

2Cl⁻ +2e \rightarrow Cl₂°

2H2O + 2Cl⁻ \rightarrow H2 + 2OH⁻ + Cl2

2H2O + 2NaCl \rightarrow H2 + 2NaOH + Cl2

Электролиз раствора сульфата натрия

восстановление молекул воды

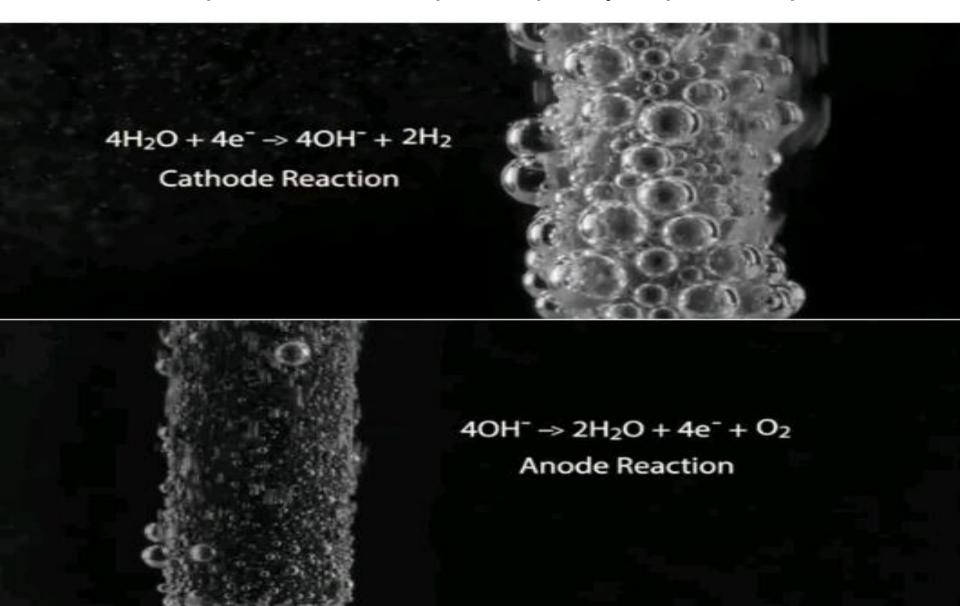
 $2H_{1}O + 2e = H_{1} + 2OH$

окисление молекул воды

 $2H_{2}O - 4e = O_{1} + 4H'$

щелочная среда

кислая среда


Суммарно: 2H,О

2H,1 + O,1

Вывод: электролиз данной соли сводится к разложению воды; соль необходима для увеличения электропроводности, так как чистая вода является очень слабым электролитом.

электр. ток

Электролиз водного раствора сульфата натрия

Важный вывод

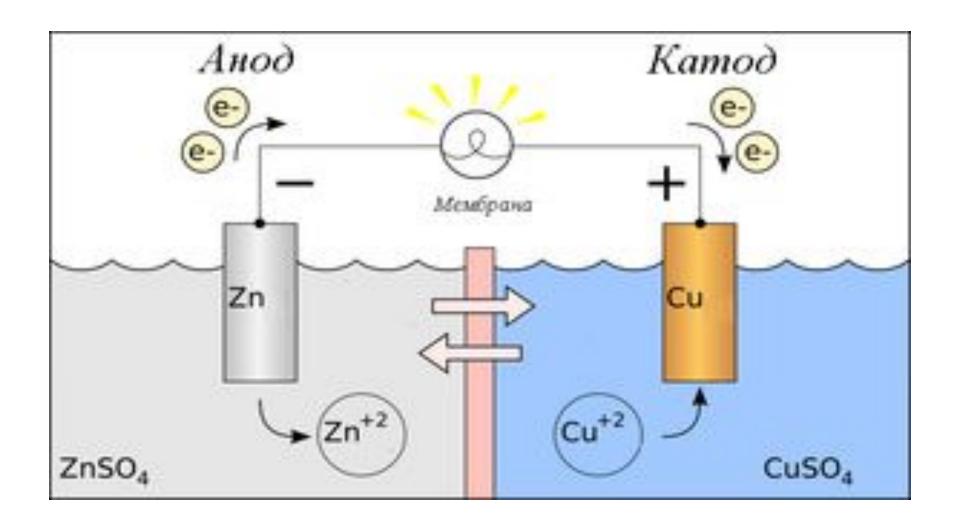
- В водном растворе
- на катоде никогда не восстанавливаются катионы типичных восстановителей, вместо них восстанавливается вода.
- на аноде никогда не окисляются анионы оксокислот, вместо них окисляется вода.

Если анод растворимый

- Анод растворимый (активный), изготовлен из Cu, Ag, Zn, Ni, Fe и др. металлы. Анионы не окисляются. Окисляется сам анод:
- Me° nē = Meⁿ⁺
- Катионы Меⁿ⁺ переходят в раствор.
 Масса анода уменьшается.

Если анод растворимый

- Анод растворимый.
- Электролиз раствора AgNO₃
- (анод растворимый из Ag)
- (–) Катод: Ag⁺ + 1ē = Ag^o
- (+) Анод: Ag° 1ē = Ag+
- $Ag^{\circ} + Ag^{\dagger} = Ag^{\dagger} + Ag^{\circ}$
- Электролиз сводится к переносу серебра с анода на катод.


Применение электролиза в металлургии

- Получение <u>щелочных и</u> <u>щелочноземельных</u> металлов из расплавов солей галогенов.
- Получение <u>алюминия из расплава</u> оксида алюминия в криолите.
- Получение малоактивных металлов из растворов солей.
- Рафинирование (очистка металлов).

Гальванический элемент

• Это химический источник электрического тока, основанный на OBP между двумя <u>металлами</u> в растворах электролитов. Назван в честь Луиджи Гальвани. в гальванических элементах происходит переход химической энергии в электрическую.

Гальванический элемент

Основы химической термодинамики