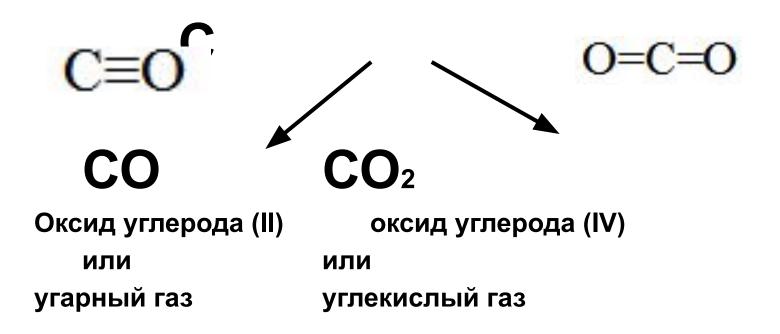

Оксиды углерода

Углерод может проявлять любые степени окисления от -4 до +4. Все соединения углерода делятся на два особых класса: органические соединения, в состав которых всегда входит углерод в степени окисления –4 и неорганические, к которым относят все остальные соединения.





Признаки	СО - угарный	CO ₂
сравнения	газ	углекислый
		газ
1.Строение		
молекулы, вид		
связи.		
2.Физические		
свойства		
3. Физиологическое		
действие на		
организм		
4.Химические свойства		
(перечислить)		
5.Получение		
6.Применение		

Оксиды углерода

Оксид углерода (II)

Угарный газ — бесцветный, не имеющий запаха, плохо растворимый в воде ядовитый газ, относится к несолеобразующим оксидам.

Молекулы СО очень прочны, поскольку связь между атомами углерода и кислорода в них тройная.

Для оксида углерода (II) характерны восстановительные свойства. Например, он восстанавливает металлы из оксидов:

$$CuO + CO = Cu + CO_2$$

На воздухе угарный газ горит:

$$2CO + O_2 = 2CO_2$$

Оксид углерода (IV)

Углекислый газ

 - газ без цвета и запаха. Это кислотный оксид, ему соответствует двухосновная угольная кислота.

Растворение оксида углерода (IV) — обратимый процесс:

$$H_2O + CO_2 \leftrightarrow H_2CO_3$$

Для углекислого газа не характерны ни окислительные, ни восстановительные свойства, хотя некоторые наиболее активные металлы горят в оксиде:

$$CO_2 + 2Mg = 2MgO + C$$

лимические своиства оксида углерода	11	,
-------------------------------------	----	---

общие с другими кислотными оксидами

специфические

 При растворении может реагировать с водой с образованием непрочной угольной кислоты:

$$CO_2 + H_2O \longrightarrow H_2CO_3$$

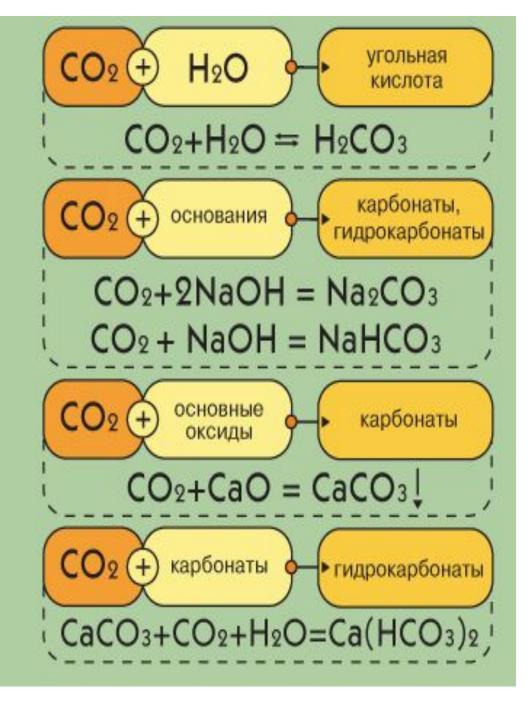
2. Реагирует с основаниями:

$$CO_2 + 2NaOH \longrightarrow Na_2CO_3 + H_2O$$
 $CO_2 + NaOH \longrightarrow NaHCO_3$
избыток

3. Реагирует с основными оксидами:

$$CO_2 + CaO \longrightarrow CaCO_3$$

 При пропускании через известковую воду наблюдается помутнение:


$$CO_2 + Ca(OH)_2 \longrightarrow CaCO_3 \downarrow + H_2O$$

Эта реакция используется для обнаружения оксида углерода (IV)

 При повышенной температуре обладает окислительными свойствами, например:

Диоксид углерода является кислотным. Кислотные свойства СО2 проявляются в реакциях с водой, основаниями и основными оксидами, а также с карбонатами с образованием кислых солей в водном растворе. Этот оксид проявляет также слабые окислительные свойства.

обменные реакции углекислого газа

Получение оксида углерода (IV)

• В лаборатории оксид углерода (IV) получают взаимодействием карбоната кальция (мел, мрамор) с соляной кислотой в аппаратах Киппа:

•
$$CaCO_3 + 2HCl = CaCl_2 + H_2O + CO_2$$

• В промышленности этот оксид получают сжиганием угля и при обжиге известняка:

•
$$C + O_2 = CO_2$$

•
$$CaCO_3 = CaO + CO_2$$

Признаки сравнения	СО- угарный газ	СО ₂ - углекислый газ
1.Строение молекулы,	C≡O	O=C=О ковалентная
вид связи.	ковалентная полярная	полярная
2. Физические свойства	Газ, б/цвета, б/вкуса и	Газ, б/цвета, б/вкуса и
	запаха, плохо	запаха, растворим в воде
	растворим в воде,	под давлением, Д _{возд} .=
	$D_{\text{возд}} = 28/29 = 1$	44/29=1,5. Легко
		сжижается и
		затвердевает - «сухой
		лед»
3. Физиологическое	ЯД!	Не ядовит.
действие на организм		
4. Химические свойства	Несолеобразующий оксид 1.Горит	Кислотный оксид 1. Взаимодействует с водой
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$CO_2+H_2O=H_2CO_3$
	2.восстановитель	лакмус красный
	CuO+CO=Cu+CO ₂	2. взаимодействует со
	2	щелочами
		$CO_2 + Ca(OH)_2 = H_2O +$
		CaCO ₃
		Горение не поддерживает
5.Получение	$CO_2 + C = 2CO$	$CaCO_3 + 2HCl = CaCl_2$
		$+\mathrm{H}_2\mathrm{O}+\mathrm{CO}_2$
6.Применение	1.восстановитель в	1.газированная вода
	металлургической	2.огнетушители
	промышленности	3. «сухой» лед
	2.топливо	