Муниципальное общеобразовательное учреждение средняя общеобразовательная школа № 11

План изучения темы:

Глюкоза в природе.

Биологические функции.

Физические свойства.

Строение глюкозы.

Химические свойства.

Получение.

Применение.

Глюкоза

Виноградный сахар

Обнаружение глюкозы в различных продуктах

t⁰

Исследуемое + реактив → осадок вещество Фелинга желтого цвета

Пряд Пряд Шряд виногр. сок мёд зефир конфета печенье банан

Физические свойства глюкозы

Бесцветное кристаллическое вещество;

Хорошо растворяется в воде; Сладкое на вкус.

Молекулярная формула

Глюкоза

- многоатомный спирт?

Лабораторный опыт:

Взаимодействие с гидроксидом меди (II)

Глюкоза + NaOH +
$$CuSO_4 \rightarrow прио-синий$$

0,5 мл 2 мл 1 мл раствор

Глюкоза – альдегид?

Лабораторный опыт:

Взаимодействие с аммиачным раствором оксида серебра.

t^C

 $AgNO_3 + NH_4OH + глюкоза \rightarrow «серебряное 2 мл по каплям 1-2 мл зеркало»$

Глюкоза

– многоатомный спирт?

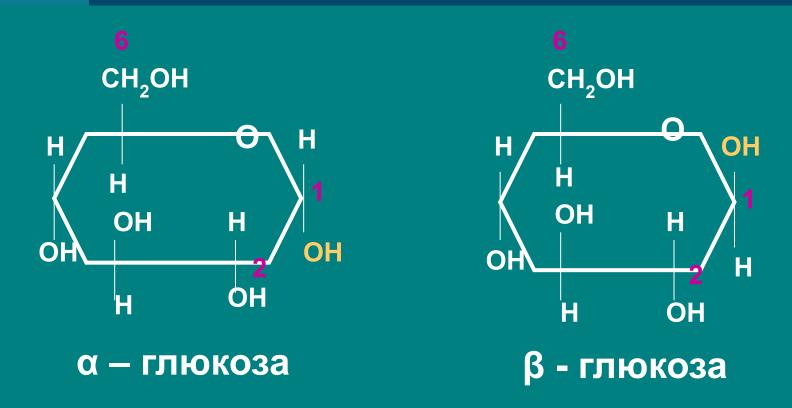
```
Лабораторный опыт:
Взаимодействие с гидроксидом меди (II)

t<sup>0</sup>
```

```
Глюкоза + NaOH + CuSO<sub>4</sub> → кирпично-
0,5 мл 2 мл 1 мл красный осадок
```

Глюкоза – карбоновая кислота?

Лабораторный опыт: Изменение окраски индикаторов


Глюкоза + лакмус → раствор красного цвета

А.А. Колли – русский химик, профессор Московского университета

1 моль глюкозы + 5 моль CH₃COOH
???

Структурная формула глюкозы

Циклические формы глюкозы

Перспективные формулы Хеуорса

Таутомерия

α – глюкоза 37% ____ альдегидная форма 0,0026%

____ **β - глюкоза** 63%

Таутомерия (динамическая изомерия)

существование изомерных форм, находящихся в равновесии и способных легко переходить в друг друга.

Химические свойства глюкозы

І. Реакции по альдегидной группе

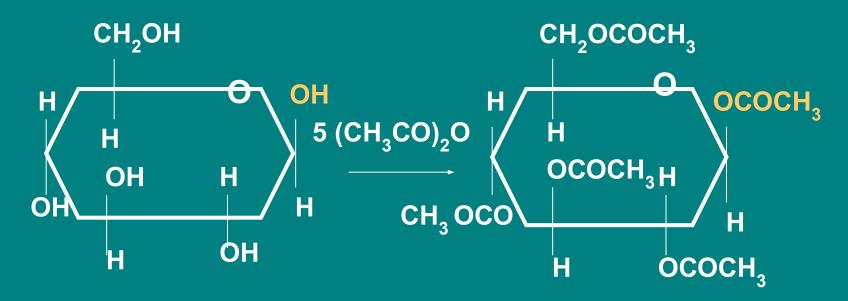
$$CH_2OH - (CHOH)_4 - C + Ag_2O \rightarrow H$$

$$ightharpoonup$$
 CH $_2$ OH — (CHOH) $_4$ — С + 2 Ag \downarrow глюконовая кислота ОН

І. Реакции по альдегидной группе

$$CH_2OH - (CHOH)_4 - C// + Cu(OH)_2 \rightarrow CH_2OH - (CHOH)_4 - C//OH + CuOH СиOH - СиОН СиОН → Си_2O↓ + H_2O$$

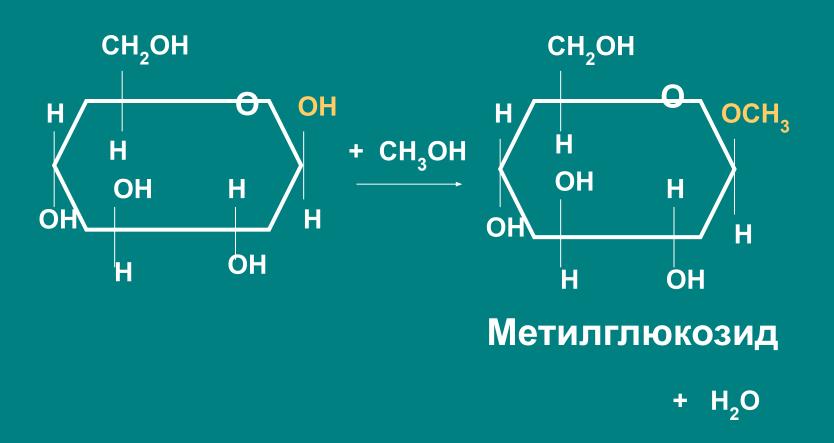
І. Реакции по альдегидной группе


$$CH2OH - (CHOH)4 - C + H2 \rightarrow$$

 \rightarrow CH₂OH — (CH OH)₄ — CH₂OH сорбит

II. Реакции по гидроксильным группам

Сахарат меди ярко-синего цвета


II. Реакции по гидроксильным группам

Пентаацетилглюкозы

+ 5 CH₃COOH

II. Реакции по гидроксильным группам

Специфические свойства глюкозыреакции брожения

$$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2\uparrow$$

Молочнокислое

$$C_6H_{12}O_6 \rightarrow 2CH_3-CH(OH)-COOH$$

Маслянокислое

$$C_6H_{12}O_6 \rightarrow C_3H_7COOH + 2CO_2\uparrow + 2H_2\uparrow$$

Получение глюкозы

Фотосинтез
$$6 \ \text{CO}_2 + 6 \ \text{H}_2\text{O} \stackrel{\text{свет}}{\longrightarrow} \ \text{C}_6\text{H}_{12}\text{O}_6 + 6 \ \text{O}_2 \\ + 2920 \ \text{кДж}$$

1861 год А.М. Бутлеров синтезировал глюкозу

$$6 \text{ H-C} = O \longrightarrow C_6 H_{12} O_6$$