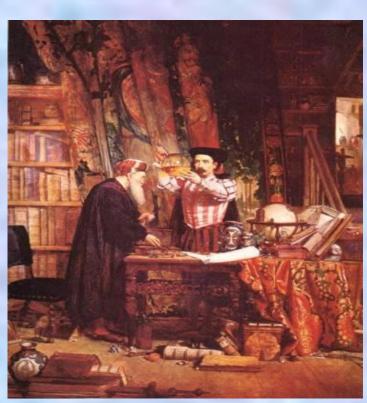
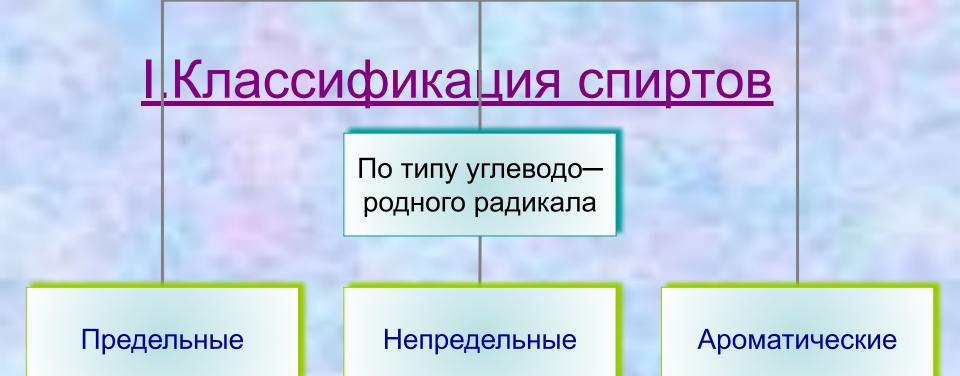
Тема урока:


Спирты

Алферова Мария Владимировна учитель химии ГБОУ лицей №486 Выборгского района г. Санкт-Петербурга

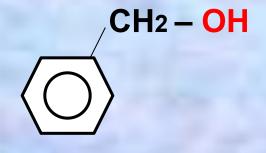
План изучения класса СПИРТЫ

- 1. Определение
- 2. Классификация
- 3. Строение предельных одноатомных
 - СПИРТОВ
- 4. Номенклатура
- 5. Изомерия
- 6. Получение
- 7. Физические свойства
- 8. Химические свойства
- 9. Применение спиртов



Спирты (Алкоголи) -

производные углеводородов, в
 молекулах которых один или несколько атомов замещены на соответствующее число гидроксильных групп (–OH)


Функциональная группа спиртов:

$$CH_2 = CH - CH_2 - OH$$

пропен-2-<mark>ол</mark>-1 (аллиловый спирт)

этанол

(этиловый спирт)

пропантриол-1,2,3 (глицерин)

CH3

2-метилпропанол-1

(изобутиловый спирт)

OH

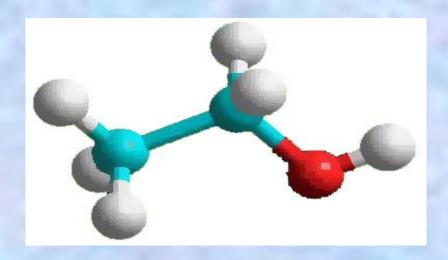
бутанол-2

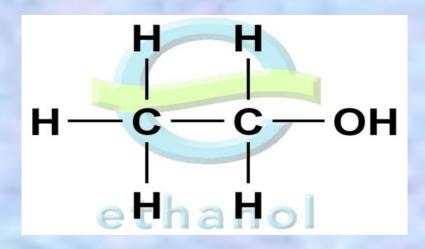
(вторичный бутиловый спирт)

OH

2-метилпропанол-2 (третичный бутиловый

спирт)


<u>Строение предельных</u> <u>одноатомных спиртов</u>


Общая формула:

CnH2n+1OH

$$R \rightarrow O \leftarrow H$$

С2Н5ОН этанол

<u>Номенклатура</u>

```
СНзОН метанол (метиловый спирт)
С2Н5ОН этанол (этиловый спирт)
СзН7ОН пропанол (пропиловый спирт)
3
                                  CH<sub>3</sub>-CH-CH<sub>3</sub>
CH3-CH2-CH2-OH
   пропанол-1
                                  пропанол-2
(пропиловый спирт)
                           (изопропиловый спирт)
             5
             CH3-CH-CH2-CH-CH3
                  CH<sub>3</sub>
             4-метилпентанол-2
```

<u>Изомерия</u>

C4H10O

І.Структурная изомерия

1. Изомерия углеродного скелета

CH₃-CH₂−CH₂−CH₂-OH ____ бутанол-1

2. Изомерия положения функциональной группы

CH3-CH-CH2-CH3

бутанол-2

CH3-CH-CH2-OH | CH3

2-метилпропанол-1

CH3-C-CH2-CH3

СНз

OH

2-метилпропанол-2

II.Межклассовая изомерия

CH3-O-CH2-CH2-CH3

CH3-CH2-O-CH2-CH3

метилпропиловый эфир

диэтиловый эфир

Получение

1.Гидролиз моногалогенпроизводных водными растворами щелочей

2. Действие воды на этиленовые углеводороды

<u>Получение</u>

3. Восстановление альдегидов и кетонов

$$H_3C$$
 H_2 ;[Ni] H_3C >CHOH H_3C H_3C H_3C изопропиловый (ацетон) спирт

4.Сбраживание растительного сырья, содержащего крахмал

 $C_6H_{12}O_6 \rightarrow 2C_2H_5OH+2CO_2$

Физические свойства

1. Агрегатное состояние

предельные одноатомные спирты от С1 до С12 – жидкости высшие спирты – мазеобразные вещества от С21 и выше – твердые вещества

2. Плотность легче воды

3. Температура кипения

- t кип. спиртов нормального строения увеличивается с увеличением молекулярной массы
- t кип. спиртов нормального строения выше t кип. спиртов изостроения

4. Растворимость в воде

С увеличением молекулярной массы снижается.

Метиловый, этиловый и пропиловый спирты хорошо растворимы.

5. Горючесть

Химические свойства

<u>І.Реакции, идущие с участием атома водорода</u> <u>гидроксильной группы</u>

1.Взаимодействие со щелочными металлами

2.Взаимодействие с карбоновыми кислотами

Химические свойства

II. Реакции, идущие с участием гидроксильной группы

1.Взаимодействие с галогеноводородами

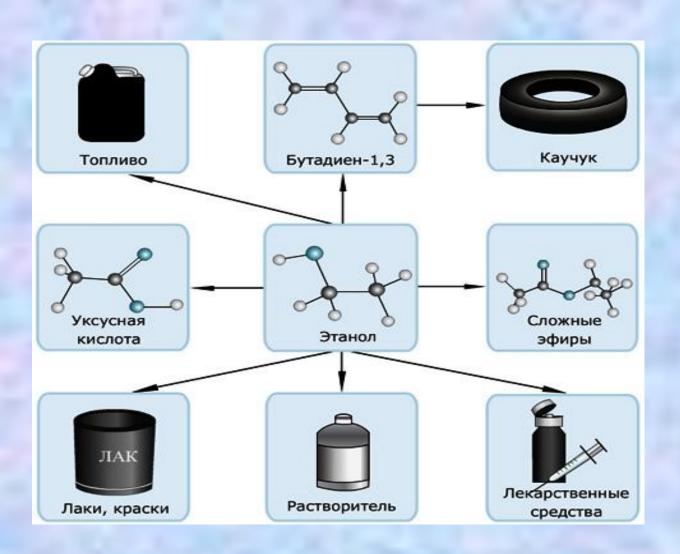
2.Отщепление воды

3. Межмолекулярная дегидратация

C₂H₅OH+HOC₂H₅ → (C₂H₅)₂O + H₂O диэтиловый эфир

Химические свойства

III.Реакции окисления


1.Отщепление водорода (дегидрирование)

2.Окисление спиртов сильными окислителями (например KMnO4+H2SO4)

3. Реакции горения спиртов

Применение спиртов на примере этанола

Спасибо за внимание!

