Оксиды, их классификация и свойства

Оксиды - сложные вещества, состоящие из двух элементов, один из которых кислород в степени окисления -2

Выпишите формулы оксидов. Определите степени окисления элементов в оксидах.

- K₂O
- BaCL₂
 - **SO**₃
 - MgO
 - Ba₃N₂
 - CuS

Классификация оксидов

несолеобазующие

солеобразующие

CO, NO, N2O

1.Основные СаО, Na2O

2. Кислотные SO₃, P₂O₅

3. Амфотерные Al2O3, ZnO

Получение оксидов способ: окисление металлов при нагревании кислородом

воздуха:

$$2Mg + O_2 \rightarrow 2MgO$$

 $2Cu + O_2 \rightarrow 2CuO$

2 способ: окисление неметаллов

$$C + O_2 = CO_2$$

3 способ: разложение кислот $t^{\circ}C$ $H_{2}SO_{3} \to SO_{2} + H_{2}O$

4 способ: разложение солей

$$CaCO_3 \xrightarrow{t^{\circ}C} CaO + CO_2 \uparrow$$

5 способ: разложение нерастворимых оснований

$$Fe(OH)_2 \xrightarrow{t^{\circ}C} FeO + H_2O$$

6 способ: вытеснение из солей другими оксидами

$$Na_2CO_3 + SiO_2 \xrightarrow{t^{\circ}C} Na_2SiO_3 + CO_2 \uparrow$$

7 способ: горение сложных веществ

$$C_2H_5OH + 3O_2^{t^2C} = 2CO_2 + 3H_2O + Q$$

Химические свойства основных оксидов

1. Основный оксид + вода → щелочь

Na₂O + H₂O→NaOH

2. Основный оксид + кислотный оксид→ соль

Na₂O + SO₃ Na₂SO₄

Химические свойства основных оксидов

3. Основный оксид + кислота → соль + вода

 $Na_2O + H_2SO_4 \rightarrow Na_2SO_4 + H_2O$

Химические свойства кислотных оксидов

1. Кислотный оксид + вода → кислота

2. Кислотный оксид + основный оксид→ соль

SO₃ + CaO→ CaSO₄

Химические свойства кислотных оксидов

3. Кислотный оксид + основание → кислота

SO₃ + NaOH→Na₂SO₄+H₂O

Закончите уравнения химических реакций, дайте название веществам:

a)
$$P + O_{2} \rightarrow$$

б) $Al + O_{2} \rightarrow$
в) $H_{2}SO_{4} + Fe_{2}O_{3} \rightarrow$
г) $BaO + HCl \rightarrow$
д) $C_{2}H_{4} + O_{2} \rightarrow$