Нижние оценки

- Доказать, что данную задачу нельзя решить быстрее, чем указано
- Нижние оценки: чем больше, тем точнее. (Для верхних оценок наоборот)
- Обычно более сложная задача, чем нахождение верхних оценок
- Рассмотрим на примере одной задачи: умножения матрицы на вектор.

Определения

- Поле: (A,+,*,0,1)
 - Кольцо с 1
 - * коммутативно
 - $\forall aOA \setminus \{0\} \exists a^{-1}: aa^{-1} = 1$
- Формальные переменные: х∉А
- Расширение поля формальными переменными: $F[x_1,...,x_n]$ наименьшее коммутативное кольцо (B,+,*,0,1), такое что В ⊇ А ∪ $\{x_1,...,x_n\}$

Матричные формулировки

• Умножение комплексных чисел: (a+ib)(c+id)

а	-b	*	С
b	а	*	d

$$= \frac{ac - bd}{bc + ad}$$

Матричные формулировки

Вычисление полинома

Модель вычислений

- $X = \{x_1, ..., x_n\}$ формальные переменные (параметры программы)
- $Y = \{y_1, ..., y_n\}$ вспомогательные переменные (вычисляются на основе x_i)
- *Неветвящаяся программа* π над F конечная последовательность команд вида

```
a := b ⊕ c
где
- aOY
- b,c O X ∪ F ∪ Y
- ⊕ O{+,-,*}
```

Термальное значение

- v: X ∪ Y → F[x₁,...,x_n] значения переменных «в терминах» x₁,...,x_n.
 - v(c) = c, если с O F
 - -v(x) = x, если $x \odot X$
 - $v(y) = v(b) \oplus v(c)$, если у О Y и в программе есть команда у := b \oplus с.
- Программа π вычисляет множество полиномов { v(a) | a O X ∪ Y}

Пример: ac-bd, ad+bc

$$X = \{a,b,c,d\}, Y = \{y1, y2, \dots\}$$

- $y_1 := ac$
- $y_2 := bd$
- $y_3 := y_1 + y_2$
- y_₄ := ad
- $y_5 := bc$
- $y_6 := y_1 + y_2$

- $y_1 := a + b$
- $y_2 := y_1 c$
- $y_3 := d-c$
- $y_4 := ay_3$
- y₅ := y₄+y₂
- $y_6 := d+c$
- $y_7 := by_6$

Определения

• Вектора $v_1, ..., v_k$ О $F^m[a_1, ..., a_n]$ линейнонезависимы по модулю F^m , если

$$\forall u_1,...u_k OF : (\Sigma u_i v_i O F^m \Rightarrow \forall i : u_i = 0)$$

- Ранг матрицы М над F[a₁,...,a_n]
 - по строкам количество л.-н. строк
 - по столбцам количество л.-н. столбцов
- Пример: $M = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}$
 - ранг по строкам = 1
 - ранг по столбцам = 3

Теорема о нижней оценке (1)

• **Теорема**. Пусть М – ($r \times p$)-матрица над $F[a_1, ..., a_n]$, $x = [x_1, ..., x_p]^T$ - столбец. Тогда, если ранг М по строкам равен r, то любое вычисление Мх требует не менее r умножений.

• $X=\{a_1,...,a_n, x_1,...,x_p\}$ — формальные переменные.

- Пусть требуется з умножений
- e₁,...,e_s вычисляются на шагах с умножением
- Тогда Мх = Ne + f, где
 - $-N-(r\times s)$ -матрица над F
 - $-e = [e_1, ..., e_s]$
 - f вектор линейных комбинаций над х_і

- Пусть r>s (противное)
- Тогда строки N линейно-зависимы (в обычном смысле матриц над полем)
- То есть Зу=[y₁,...,y_r]OF^r, y≠<u>0</u>: yN = <u>0</u>
 (<u>0</u> нулевой вектор)
- Домножая слева на у, получаем:
 (yM)x = (yN)e + yf = yf
- Поскольку в yf нет $x_i x_i$, то в yM нет xi
- T.e. yMOF^m и строки М линейно зависимы.
- Противоречие. Конец доказательства.

Теорема о нижней оценке (2)

- **Теорема**. Пусть M ($r \times p$)-матрица над $F[a_1, ..., a_n]$, $x = [x_1, ..., x_p]^T$ столбец, $y \circ F^p[a_1, ..., a_n]$. Тогда, если ранг M по столбцам равен q, то любое вычисление Mx+y требует не менее q активных умножений.
- *Активное умножение* у*z, если v(y) содержит х_і, а v(z)∉F или наоборот

Активное умножение - примеры

v(y)	v(z)	
3+a ₂	x ₁ +2x ₃	Активно
3	x ₁ +2x ₃	Неактивно
3+a ₂	a ₁ +2a ₃	Неактивно

Доказательство (индукция)

- q = 1)
 - Существует m_{ii}OF[a₁,...,a_n] \ F
 - Мх (а значит, и МХ+у) содержит произведение m_{іі}х_і
 - Без активных умножений можно вычислить только P(a₁,...,a_n) + L(x₁,...,x_D), где
 - P полином
 - L линейная комбинация
 - Следовательно, есть хотя бы одно активное умножение.

Доказательство (индукция)

- Шаг индукции: q>1
 - Пусть π вычисление для Мх+у.
 - По предположению индукции π содержит q-1 активное умножение
 - Пусть f := gh первое активное умножение, где (без потери общности)

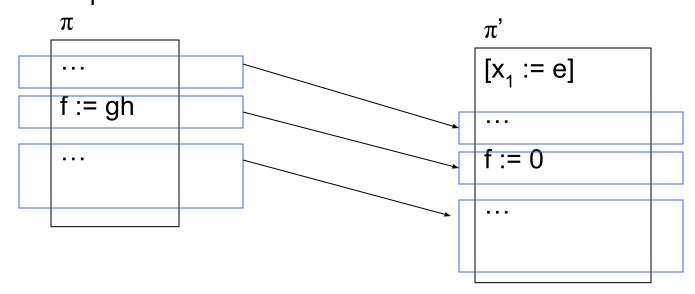
$$v(g) = P(a_1,...,a_n) + (c_1x_1 + ... + c_px_p), c_1 \neq 0$$

Заметим, что значение X₁ равное

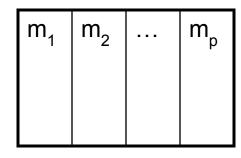
$$e = -c_1^{-1} (P(a_1,...,a_n) + (c_2 x_2 + ... + c_p x_p))$$

обращает v(g) в 0.

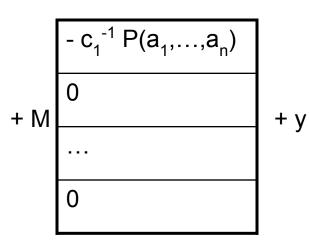
- Построим π' вычисление для Мх+у при x_1 =е
 - имеет на одно активное умножение меньше, чем π
 - х₁ «рабочая» переменная



• π' вычисляет М'х' + у', причём ранг М' по столбцам равен q-1



$-c_1^{-1}(c_2x_2++c_px_p)$
x_2
x _p

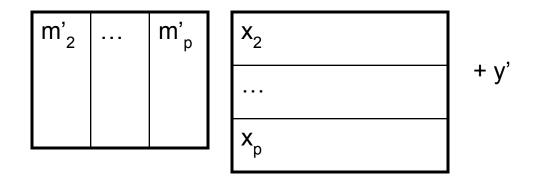


• Положим

$$- m'_{i} = m_{i} + c_{1}^{-1}c_{i}m_{1}, i=2..p$$

$$- y' = M \times [-c_1^{-1} P(a_1,...,a_n),0,...] + y$$

• π' вычисляет М'х' + у', причём ранг М' по столбцам равен q-1(докажем позже)



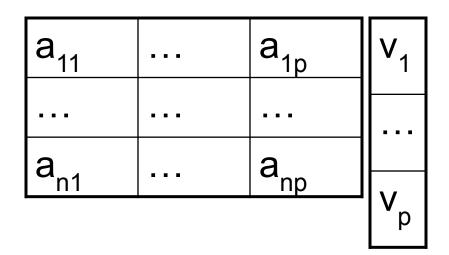
- По предположению индукции в π' по крайней мере q-1 активное умножение, а значит в М по крайней мере q.
- Конец доказательства.

Использованная лемма

- Лемма. Пусть задан набор векторов $v_1, ..., v_k OF^m[a_1, ..., a_m]$. Если среди них есть q линейно-независимых, то для любых $b_2, ..., b_k OF$ в наборе $v_2 + b_2 v_1, ..., v_k + b_2 v_k$ есть q-1 линейнонезависимый вектор.
- **Доказательство**. Аналогично доказательству из линейной алгебры.

Пример

• Вычисление умножения матрицы на вектор



• требует по крайней мере max(n,p) умножений

Пример

• Вычисление умножения матрицы на вектор

V ₁		V _p	0	0	0	0	0	0	0
0	0	0	v ₁		V _p	0	0	0	0
0	0	0	0	0	0		0	0	0
0	0	0	0	0	0	0	v ₁		V _p

a₁₁
...
a_{1p}
...
a_{n1}

• требует по крайней мере n × p умножений – *лучшая оценка*

Пример

• Вычисление полинома требует по крайней мере n умножений.