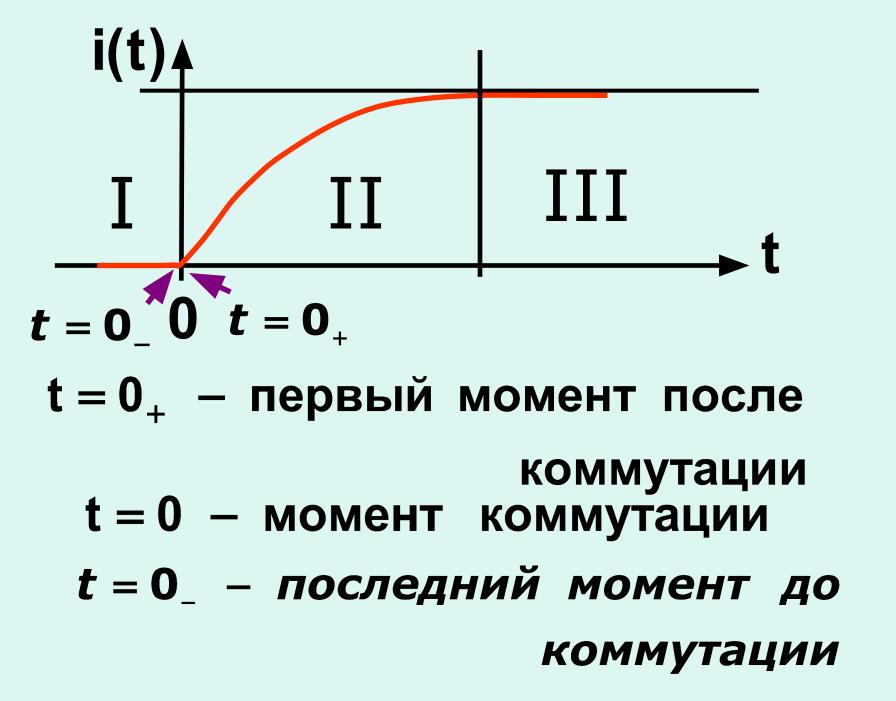

3. Переходные процессы в линейных электрических цепях

- Переходный процесс режим работы электрической цепи, возникающий при переходе цепи из одного установившегося состояния в другое установившееся состояние
- Коммутация любое изменение параметров цепей, приводящее к возникновению переходных процессов

Виды коммутации:

замыкание


размыкание переключение

Коммутация осуществляется идеальным ключом

$$R_{3amk}=0$$

$$t_{_{\scriptscriptstyle KOMM}}=0$$

$$R_{pa3} = \infty$$

Переходный процесс возможен в цепях, содержащих *реактивные* элементы

Законы коммутации

1-ый закон Ток в индуктивности не может измениться скачком

$$i_{\scriptscriptstyle L}(0_{\scriptscriptstyle -})=i_{\scriptscriptstyle L}(0_{\scriptscriptstyle +})$$

2-ой закон Напряжение на ёмкости не может измениться скачком

$$u_c(\mathbf{0}_{\scriptscriptstyle{-}})=u_c(\mathbf{0}_{\scriptscriptstyle{+}})$$

Начальные условия значения токов и напряжений в момент t=0+

Независимые начальные условия – не изменяются в момент коммутации – ННУ

$$i_{\scriptscriptstyle L}(0), u_{\scriptscriptstyle C}(0)$$

Определяют из схемы до коммутации

могут быть нулевыми и ненулевыми

Зависимые начальные условия – могут изменяться в момент коммутации – ЗНУ

$$i_c(0), u_L(0), i_R(0), u_R(0)$$

Определяют по законам Кирхгофа из схемы после коммутации

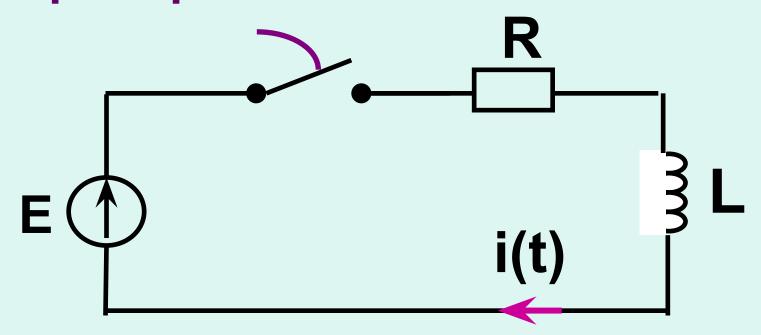
$$(t=0_{_{\scriptscriptstyle +}})$$

Расчет переходных процессов первого порядка классическим методом

- 1. Задать направления токов
- 2. Определить начальные условия a) ННУ при $\mathbf{t} = \mathbf{0}_{-}$
 - б) ЗНУ при $\mathbf{t} = \mathbf{0}_{+}$
- 3. Определить при $\mathbf{t} \to \infty$ принужденную составляющую χ_{π}

4. Определить корень характеристического

уравнения
$$\boldsymbol{p}\left[\boldsymbol{c}^{-1}\right]$$
 из условия


где R_{экв} – эквивалентное сопротивление относительно реактивного элемента

5. Для $x(t) = x_{np} + A \cdot e^{pt}$ используя начальные условия, определить неизвестный коэффициент А

6. Построить график Длительность переходного процесса

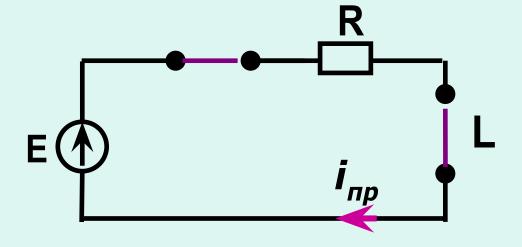
$$\mathbf{t}_{\mathsf{п}\mathsf{\Pi}} = \left(\mathbf{3} \div \mathbf{5}\right) \mathbf{\tau}$$
 где $\mathbf{\tau} = \frac{1}{|\mathbf{p}|}$ [c]

Пример

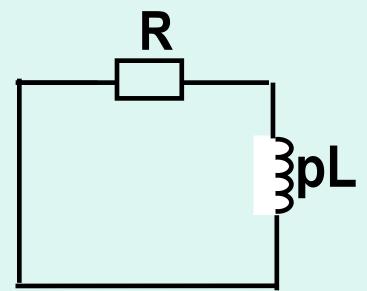
$$u_L(t)-?$$

2. a)
$$t = 0_{-}$$
R
 $i(0_{-}) = 0$
 $u_{L}(0_{-}) = 0$

b)
$$t = 0_{+}$$

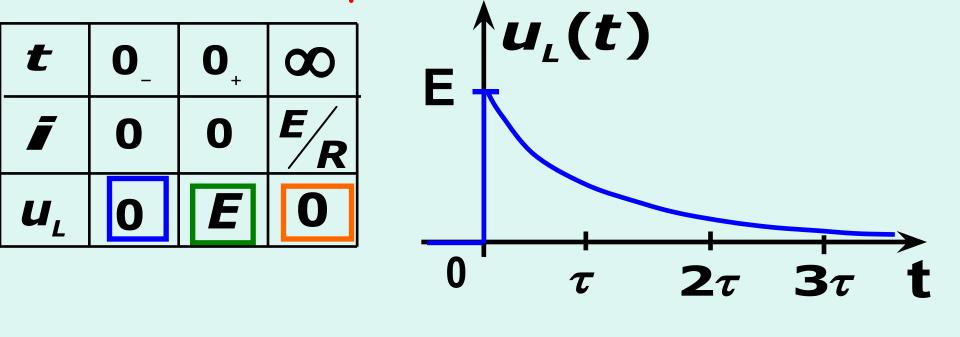

R

 $u_{R}(0_{+}) + u_{L}(0_{+}) = E$
 $u_{R}(0_{+}) = 0$
 $u_{R}(0_{+}) = 0$
 $u_{L}(0_{+}) = E$


3. $t \rightarrow \infty$

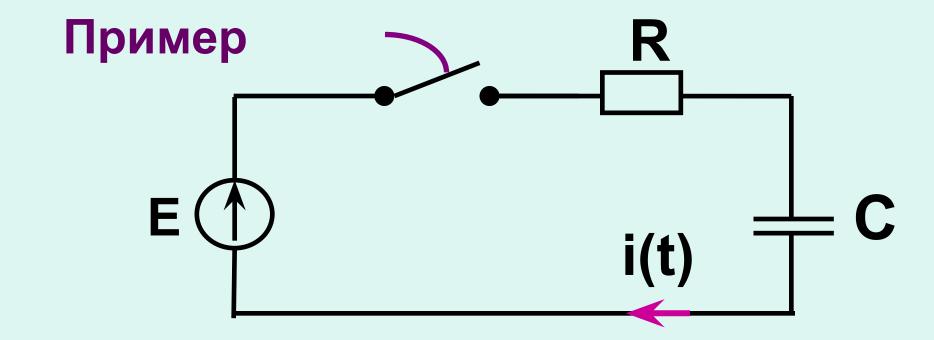
$$i_{np} = \frac{E}{R}$$

$$u_{Lnp} = 0$$


4.

$$p = -\frac{R}{L} \left[c^{-1} \right]$$

$$\tau = \frac{L}{R} \left[c \right]$$


$$i(0_{+}) = i_{np} + A_{1}$$
 $i(t) = \frac{E}{R}$
 $A_{1} = i(0_{+}) - i_{np} = 0 - \frac{E}{R} = -\frac{E}{R}$

$$u_L(t) = u_{Lnp} + A_2 e^{p \cdot t}$$

$$u_L(\mathbf{0}_+) = u_{Lnp} + A_2$$
 $u_L(t) = Ee^{p \cdot t}$

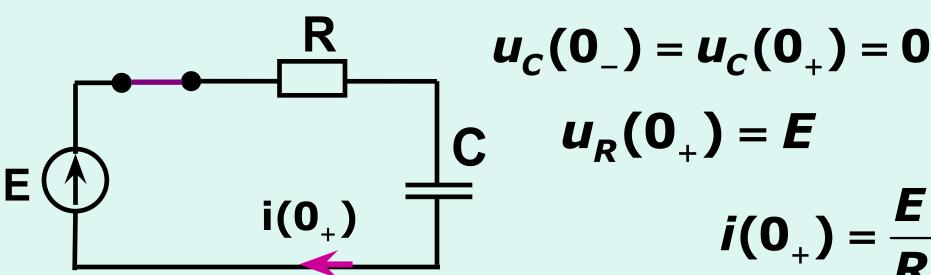
$$A_2 = u_L(0_+) - u_{Lnp} = E - 0 = E$$

$$i(t)-? u_c(t)-?$$

2. a)
$$t = 0_{-}$$

$$i(0_{-}) = 0$$

$$u_{c}(0_{-}) = 0$$


2. a)
$$t = 0_{-}$$

$$i(0_{-}) = 0$$

$$u_{c}(0_{-}) = 0$$

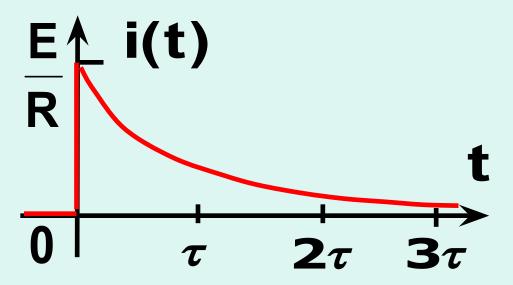
$$i(0_{-}) = 0$$

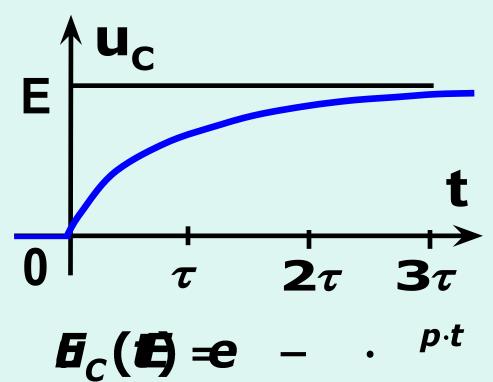
b)
$$t = 0_{+}$$
 $u_{R}(0_{+}) + u(0_{+}) = E$

3.
$$t \rightarrow \infty$$

$$R \quad i_{np} = 0$$

$$U_{Rnp} = 0$$


$$U_{Cnp} = E$$


4.

$$p = -\frac{1}{RC} \left[c^{-1} \right]$$

$$\tau = \frac{1}{|\boldsymbol{p}|} = RC [c]$$

$$egin{array}{c|cccc} t & o_{-} & o_{+} & \infty \\ i & o_{-} & \digamma_{R} & o \\ \hline u_{c} & o & o & E \\ \hline \end{array}$$

$$i(t) = \frac{E}{R} \cdot e^{p \cdot t}$$