

КЛАССИФИКАЦИЯ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ КИСЛОТЫ

Учитель химии МАОУ Лицей №1 Солоха Н.В.

КЛАССИФИКАЦИЯ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

Неорганические вещества

простые сложные

металлы неметаллы оксиды

СОЛИ

кислоты ос

основания

КИСЛОТЫ

Кислоты — сложные вещества, состоящие из атомов водорода и кислотного остатка.

Кислотный остаток — это всё в молекуле кислоты, кроме атомов водорода.

HF, HCl, HBr, HI, H₂S, H₂SO₄, H₂SO₃, H₂SiO₃, HNO₂, HNO₃, H₃PO₄, H₂Cr₂O₇, H₂CO₃.

Валентность кислотного остатка равна количеству атомов водорода в молекуле кислоты.

Классификация кислот

Кислоты — сложные вещества, состоящие из атомов водорода и кислотного остатка.

Кислоты (по содержанию кислорода)

бескислородные HCl, HBr, H₂S

кислородосодержащие H_2SO_4 , HNO_3 , H_3PO_4

Классификация кислот

Кислоты

(по количеству атомов водорода)

одноосновные двухосновные трехосновные HCl, $HBr\ HNO_3$ H_2S , H_2SO_4 H_3PO_4

Неустойчивые кислоты:

- угольная кислота H₂CO₃
- кремниевая кислота H_2SiO_3
 - сернистая кислота H_2SO_3

Формулы и названия кислот

Nº	Название кислоты	Формула	Кислотный остаток	Валентность кислотн. остатка	Название солей
1	Хлороводородная (соляная) кислота	HC1	Cl	I	хлорид
2	Бромоводородная кислота	HBr	Br	I	бромид
3	Фтороводородная кислота	HF	F	I	фторид
4	Иодоводородная кислота	НІ	I	I	иодид
5	Сероводородная кислота	H_2S	S	II	сульфид
6	Серная кислота	H_2SO_4	SO_4	II	сульфат
7	Сернистая кислота	H_2SO_3	SO_3	II	сульфит
8	Угольная кислота	H_2CO_3	CO_3	II	карбонат
9	Кремниевая кислота	H_2SiO_3	SiO_3	II	силикат
10	Азотная кислота	HNO_3	NO_3	I	нитрат
11	Азотистая кислота	HNO_2	NO_2	I	нитрит
12	Ортофосфорная кислота	H_3PO_4	PO ₄	III	ортофосфат

Физические свойства кислот:

- кислоты могут быть жидкими (H_2SO_4 , HNO_3), твердыми (H_3PO_4 , H_3BO_3) ;
- большинство кислот образуют бесцветные растворы;
- некоторые кислоты обладают характерными запахами;
- большинство кислот хорошо растворимы в воде;
- имеют кислый вкус;
- вызывают ожоги;
- разрушают бумагу, ткани.

Химические свойства кислот

- Кислоты изменяют окраску индикаторов.
- *Индикаторы* это вещества, меняющую свою окраску в разных веществах (в разных средах)
- *В кислотах* индикаторы имеют следующую окраску:

№ п/п	Название индикатора	Нейтральная среда(вода)	Кислая среда (кислота)	Щелочная среда (щёлочь)
1.	Лакмус	фиолетовый	красный	синий
2.	Метилоранж(метиловый оранжевый)	оранжевый	Ярко-розовый(красный)	желтый
3.	Фенолфталеин	бесцветный	бесцветный	малиновый
4.	Универсальная индикаторная бумага	желтая	красная	синяя

Кислоты в природе

Лимонная кислота

Муравьиная кислота

Яблочная кислота

Уксусная кислота

Щавелевая кислота

Молочная кислота

Выберите строку, в которой расположены только кислоты

Mg(NO ₂) ₂	PbO ₂	HCl
H ₃ PO ₄	H ₂ SO ₄	Na ₂ S
HNO ₃	BaCO ₃	Al ₄ C ₃

Выберите строку, в которой расположены только кислородосодержащие кислоты

H ₂ S	HBr	HCl
H ₂ SO ₄	HNO ₃	H ₃ PO ₄
Na ₂ S	Al ₄ C ₃	Ca(OH) ₂

Выберите строку, в которой расположены только двухосновные кислоты

H ₃ PO ₄	H ₂ SO ₄	HCl
Mg(NO ₂) ₂	H ₂ S	Ba ₃ P ₂
BaCO ₃	H ₂ CO ₃	Al ₂ S ₃

Выберите строку, в которой расположены только одноосновные кислоты

Zn(OH) ₂	H ₂ CO ₃	Be(OH) ₂
HCI	HNO ₃	HBr
MgO	HClO ₄	H ₂ SO ₄

Домашнее задание:

- Выписать в столбик формулы кислот, подчеркнуть кислотные остатки, указать их валентность, назвать кислоты PH₃, Cl₂O₅, LiOH, HClO₄, Li₃N, H₂CrO₄, NaBr, HMnO₄, BaSO₄, Ca₃P₂, HgO, KOH, HBr, H₂SiO₃, BaS, H₂SO₄, HNO₃, Cu(OH)₂, PbO, Mg₃P₂, HCl, H₂CO₃, HF.
- Распределить эти кислоты по группам: одноосновные, двухосновные, трехосновные, кислородосодержащие, бескислородные.
- ПО ЖЕЛАНИЮ МОЖНО ПОДГОТОВИТЬ ПРЕЗЕНТАЦИЮ ПО ТЕМЕ «КИСЛОТЫ В ПРИРОДЕ»