Повторение

- Положение щелочноземельных металлов в таблице химических элементов.
- Физические и химические свойства кальция.

Проверь себя

С помощью уравнений реакций осуществите превращения:

1)
$$Ca \rightarrow CaO \rightarrow Ca(OH)_2$$

 $Ca(OH)_2 \rightarrow CaCO_3$

2) Ba
$$\rightarrow$$
 BaO \rightarrow Ba(OH)₂ \rightarrow BaSO₄ Ba(OH)₂

Оксиду кальция соответствует формула

1. MeO

Me₂O₃
 Me₂O

4. MeO,

- Оксид бария по свойствам относится к
- 1. Основным оксидам
- 2. Кислотным оксидам
- 3. Амфотерным оксидам
- 4. Несолеобразующим оксидам

Формула нитрида кальция

1. CaN

2. *Ca*₃*N*

Ca₂N₃
 Ca₃N₂

Формула каустической соды:

1.
$$K_2CO_3$$

Металлический барий можно получить

$$1. BaCl_2 + Mg =$$

2.
$$BaCl_{2me} \xrightarrow{mo\kappa} \longrightarrow$$

3.
$$BaO + H_2 =$$

4.
$$Ba(OH)_2 + Na =$$

Соединения щелочноземельных металлов

Оксиды II А группы Получение

1) Окисление металлов

$$2Ca + O_2 \rightarrow 2CaO$$

Нужно помнить!!!
Ве + H_2O \rightarrow реакция не идёт

2) Термическое разложение нитратов или карбонатов

$$CaCO_3$$
 $^{\dagger \circ C} \rightarrow CaO + CO_2$
 $2Mg(NO_3)_2$ $^{\dagger \circ C} \rightarrow 2MgO + 4NO_2 + O_2$

Теория 1. Известно, что металлам соответствует основные оксиды.

- Докажите, что оксид кальция основной оксид, составив уравнения соответствующих реакций.
- $CaO + H_2O \rightarrow Ca(OH)_2$
- $CaO + CO_2 \rightarrow CaCO_3$
- $CaO + H_2SO_4 \rightarrow CaSO_4 + H_2O$
- СаО негашеная известь

Гидроксиды II А группы Получение

1) Реакции щелочноземельных металлов с водой: $Ba + 2H_2O \rightarrow Ba(OH)_2 + H_2\uparrow$

2) Реакции оксидов щелочноземельных металлов с водой:

$$CaO$$
 (негашеная известь) + $H_2O \rightarrow Ca(OH)_2$ (гашеная известь)

Hужно помнить!!!
ВеО + H_2 О → реакция не идёт

Теория 2. Известно, что металлу соответствует основной оксид и основание.

- Докажите, что гидроксид кальция основание.
- $Ca(OH)_2 + H_2SO_4 \rightarrow CaSO_4 + H_2O$
- $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 \downarrow + H_2O$
- $Ca(OH)_2 + CuSO_4 \rightarrow CaSO_4 + Cu(OH)_2 \downarrow$
- $Ca(OH)_2 гашеная известь$

Способ получения щелочных и щелочноземельных металлов -

- Электрометаллургический
 - Составьте уравнения электролиза расплавов природных соединений калия и натрия хлоридов этих металлов.

Соединения ЩЗМ

ФОРМУЛА СОЛИ	названия и синонимы	ПРИМЕНЕНИЕ
CaCO ₃	известняк, мел карбонат кальция	в строительстве
MgCO ₃	карбонат магния	производство стекла, цемента, кирпича
CaSO ₄ *2H ₂ O	гипс	медицина, строительство
2CaSO ₄ *2H ₂ O	алебастр	в медицине
MgSO ₄	горькая соль	слабительное в медицине
Ca ₃ (PO ₄) ₂	апатит	получение фосфора

Природные соединения щелочноземельных металлов

1. CaCO₃ – мел, мрамор, известняк;



2. CaSO₄ · 2H₂O – природный гипс, кристаллогидрат сульфата кальция;

3. MgSO₄ - горькая английская соль;

Влияние кальция и магния на организм человека (стр 66).

4. Ca₃(PO₄)₂

Технические соединения щелочноземельных металлов

 СаО - негашеная, жженная известь
 СаСО₃ = CaO + CO₂↑

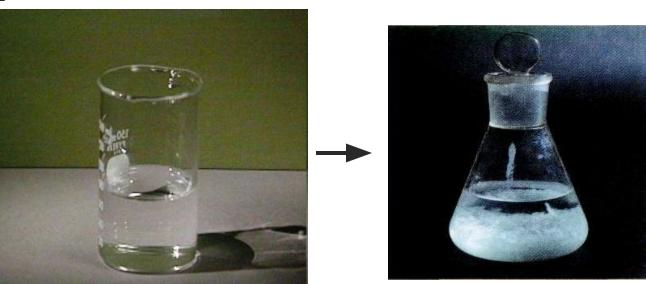
$$CaO + H_2O = Ca(OH)_2 + 15.5 \kappa \kappa \alpha \Lambda$$
.

2. MgO – жженная магнезия

$$MgCO_3 = MgO + CO_2\uparrow$$

4. $CaSO_4 \cdot 0,5H_2O$ или $2CaSO_4 \cdot H_2O$ - алебастр

3. Ca(OH)₂ - гашеная известь


Раствор Ca(OH)₂ - известковая вода

Взвесь $Ca(OH)_2$ –

известковое

молоко

Жесткость воды

Природная вода, содержащая ионы Ca^{2+} и Mg^{2+} называется жесткой.

Жесткая вода при кипячении образует накипь, в ней не развариваются пищевые продукты; моющие средства не дают пены.

- •Карбонатная (временная) жесткость обусловлена присутствием в воде гидрокарбонатов кальция и магния
- •Некарбонатная (постоянная) жесткость хлоридов и сульфатов.

Общая жесткость воды рассматривается как сумма карбонатной и некарбонатной.

Удаление жесткости воды

Данный процесс осуществляется путем осаждения из раствора ионов Ca²⁺ и Mg²⁺

1) Кипячением:

$$Ca(HCO_3)_2$$
 †° $C \rightarrow CaCO_3 \downarrow + CO_2 \uparrow + H_2O$
 $Mg(HCO_3)_2$ †° $C \rightarrow MgCO_3 \downarrow + CO_2 \uparrow + H_2O$

- 2) Добавлением известкового молока: $Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 \downarrow + 2H_2O$
- 3) Добавлением соды: $Ca(HCO_3)_2 + Na_2CO_3 \rightarrow CaCO_3 \downarrow + 2NaHCO_3$ $CaSO_4 + Na_2CO_3 \rightarrow CaCO_3 \downarrow + Na_2SO_4$ $MgCl_2 + Na_2CO_3 \rightarrow MgCO_3 \downarrow + 2NaCl$