Аллотропные модификации кремния

аморфный кремний -это белый порошок (без примесей) и коричневый порошок (с примесями) t плавления 1420 C, Более активный чем кремний кристаллический, но менее устойчивый

кристаллический кремний - твердое вещество, темно-серого цвета со слабым метал. блеском, весьма прочное (7б), обладает тепло и электропроводностью, которая увеличивается при освещении и нагревании.

Получение Кремния

1Восстановление из оксида кремния с помощью C, Mg, Al.

$$SiO_2+2Mg=Si+2MgO$$

 $SiO_2+2C=2CO+Si$
 $3SiO_2+4Al=2Al_2O_3+2Si$

2. Восстановление хлорида кремния (IV) с помощью Zn, H_2

Химические свойства кремния

1. При взаимодействии, с металлами кремний как неметалл играет роль окислителя.

$$Si + 2Mg = Mg_2Si$$

При обработке силицида магния соляной кислотой или водой образуется простейшее водородное соединение кремния - силан SiH₄:

$$Mg_2Si + 4HCl = 2MgCl_2 + SiH_4\uparrow$$

 $Mg_2Si + 4H_2O = 2Mg(OH)_2 + SiH_4\uparrow$

Химические свойства кремния

2) C неметаллами: Si+C=SiC карборунд Si+O2=SiO2 Si + 2Cl₂= SiCl₄

- 3) Взаимодействие с водным раствором щёлочи:
- Si+2NaOH+H2O=Na2SiO3+2H2
- **4)** Гидролиз галогенидов кремния SiCl4 + H2O →SiO2 + 4HCl

Соединения кремния

1. Оксид кремния (IV)

Оксид кремния SiO₂ (IV) называют также кремнеземом

✓ Физические свойства:

бесцветное, твердое тугоплавкое вещество (tплав.=1700°C), (H) в H2O и кислотах, кроме плавиковой, имеет атомную кристаллическую решётку

SiO_2

оксид кремния (IV)

Химические свойства оксида кремния (IV) (SiO₂₎

1. Со щелочами:

$$SiO_2 + 2NaOH = Na_2 SiO_3 + H_2O$$

2. С основными оксидами:

$$CaO + SiO_2 = CaSiO_3$$

3. Отношение к воде:

Не взаимодействует!

Вытеснение более летучий кислотный оксид из солей:

$$Na_2CO_3 + SiO_2 = Na_2SiO_3 + CO_2$$

5. Взаимодействие с плавиковой кислотой.

Используют для изготовления надписей и рисунков на стекле.

$$SiO_2 + 2HF = SiF_4 \uparrow + 2H_2O$$

Травление или сатинирование

Эту технологию начали использовать в 1771 г. с открытием плавиковой кислоты. Сама эта кислота делает стекло блестящим, а ее газы - матовым. Травить можно всю поверхность полностью (при этом она остается гладкой) или выборочно (только рисунок).

Кремниевые кислоты — очень слабые, малорастворимые в воде кислоты общей формулы nSiO2•mH2O. Из кремниевых кислот известны: метакремниевая H₂SiO₃, ортокремниевая H₄SiO₄, дикремниевые H₂Si₂O₅ и H₁₀Si₂O₉, пирокремниевая H₆Si₂O₇ поликремниевые nSiO₂•mH₂O.

КРЕМНИЕВАЯ КИСЛОТА H2SIO3

- Двухосновная
- Кислородсодержащая
- Слабая
- Нестабильная
- Нелетучая
- Нерастворимая

При нагревании разлагается: $H_2SiO_3 \rightarrow SiO_2 + H_2O$

Кремниевая кислота

- Формула: H₂SiO₃, правильнее: SiO₂ × nH₂O
- Имеет атомную кристаллическую решётку
- Нерастворима в воде
- Слабая, непрочная
- Образуется по реакции обмена:

• При нагревании разлагается:

$$SiO_2 \times nH_2O \rightarrow SiO_2 + nH_2O$$

- Взаимодействует со щелочами:
- SiO₂× H₂O↓ + 2NaOH → Na₂SiO₃ + H₂O