

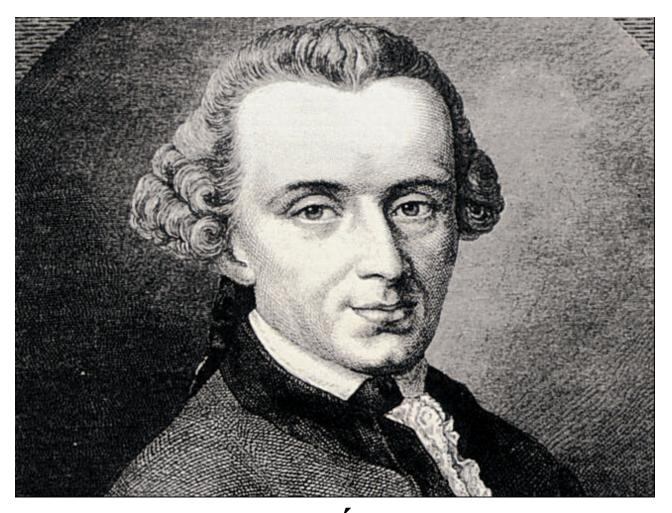
Новосибирский Государственный Архитектурно-Строительный Университет (Сибстрин)

Лекция 6.

КИНЕМАТИКА И ДИНАМИКА ТОЧКИ

Я никогда не должен говорить, что тело находится в состоянии покоя или движения, не прибавляя, к каким именно телам оно покоится или изменяет свое положение.

Эммануил Кант



Иммануи́л Кант 1724-1804, Кёнигсберг

• Кинематика

Кинематика исследует движение тел лишь с геометрической точки зрения, без учета сил вызывающих это движение

• Динамика

Динамика отвечает на основной вопрос курса – из-за чего возникает и как изменяется движение

• Статика

Статика изучает условия равновесия (покоя) тел. Фактически это частный случай движения, т.к. покой и равномерное и прямолинейное движение эквивалентны

6.1. Введение в кинематику точки

6.1.1. Задачи кинематики

Кинематика — это раздел теоретической механики, в котором изучается движение тела с геометрической точки зрения, т.е. без учета сил, действующих на тело

Движение материальной точки — это изменение ее положения относительно какого-либо другого тела (тела отсчета) с течением времени

Положение объекта задается расстоянием до некоторого другого объекта и является относительным. Относительным является и само движение

Задачи кинематики

- 1. Определение математических способов задания движения тела
- 2. Определение для заданного способа задания движения тела его кинематических характеристик

6.1.2. Относительность движения

- Совокупность тела отсчета и жестко связанных с ним координатных осей и часов называется системой отсчета
- Движение одного и того же тела относительно разных объектов (тел) может быть совершенно различным

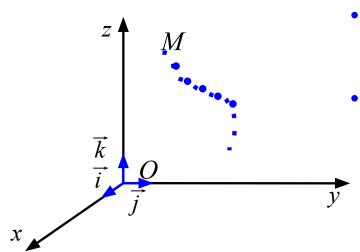
В системе отсчета поезда

6.1.3. Пространство и время

- Постулируется существование не связанных между собой абсолютного пространства и абсолютного времени
- Свойства пространства и времени не зависят и от того, как движутся тела
- Пространство является трехмерным евклидовым пространством, оно однородное и изотропное
- Время также однородное и одинаково во всех точках пространства
- Время изменяется непрерывно, а наблюдатель измеряет "расстояние" между различными моментами времени часами
- Часы универсальны и их показания не зависят от того, расположены они в покоящихся или движущихся объектах
- Однородность времени означает отсутствие выделенных моментов времени. Выбор начала отсчета времени поэтому диктуется лишь конкретной решаемой задачей

6.2. Способы задания движения точки

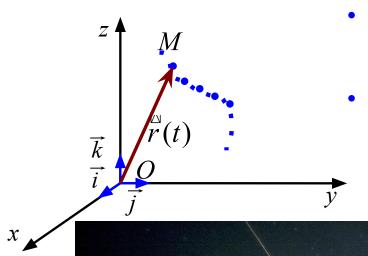
6.2.1. Векторный и координатный способы



- Пусть точка М движется относительно системы отсчета *Охуг*
- С течением времени положение точки М относительно данной системы отсчета меняется

Геометрическое место последовательно занимаемых движущейся материальной точкой положений в пространстве относительно некоторого тела отсчета называется ее траекторией

6.2.1. Векторный и координатный способы

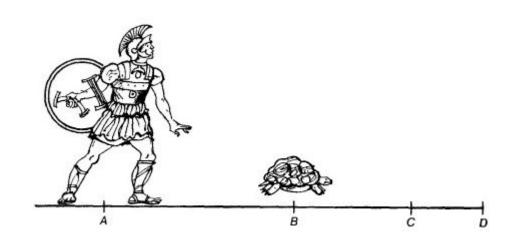


- Пусть точка М движется относительно системы отсчета *Охух*
- С течением времени положение точки М относительно данной системы отсчета меняется

Падение
метеорита (t), z = z(t)

6.3. Скорость точки

6.3.1. Апории Зенона

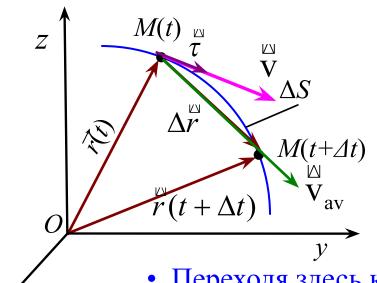


Догонит ли Ахиллес черепаху?

- Как охарактеризовать движение различных тел, преодолевающих равные отрезки за разное время?
- Скорость материальной точки это векторная кинематическая характеристика движения точки, определяющая быстроту изменения ее положения относительно заданной системы координат

Зенон Элейский V век до н.э.

6.3.2. Векторный способ задания скорости



- Рассмотрим движение точки M вдоль траектории
- Пройденный путь равен $\Delta s \sim \Delta r$
- Введем среднюю скорость

$$\overset{\boxtimes}{\mathbf{v}}_{\mathrm{av}} = \frac{\Delta \overset{\boxtimes}{r}}{\Delta t}$$

• Переходя здесь к пределу $\Delta t \to 0$, получим мгновенную скорость точки

$$\overset{\mathbb{N}}{\mathbf{v}} = \lim_{\Delta t \to 0} \overset{\mathbb{N}}{\mathbf{v}}_{\text{av}} = \lim_{\Delta t \to 0} \frac{\Delta r}{\Delta t} = \frac{dr}{dt} = \overset{\mathbb{N}}{\mathbf{v}}$$

• Скорость материальной точки — это векторная кинематическая характеристика точки, определяющая быстроту изменения ее положения относительно данной системы координат и равная производной от радиусвектора точки по времени. Вектор скорости точки направлен по касательной к траектории в сторону ее движения.

6.3.3. Координатный способ задания скорости

$$\mathbf{v} = \frac{d\mathbf{r}}{dt} = \mathbf{r} = \mathbf{i}\mathbf{v}_{x} + \mathbf{j}\mathbf{v}_{y} + \mathbf{k}\mathbf{v}_{z}$$

• Чтобы найти проекции скорости, продифференцируем радиусвектор точки

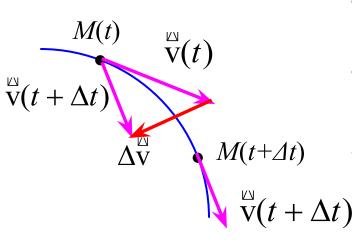
$$\mathbf{v} = \mathbf{z} = \frac{d}{dt}(x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) = \mathbf{z}\mathbf{i} + \mathbf{y}\mathbf{j} + \mathbf{z}\mathbf{k} = \mathbf{v}_{x}\mathbf{i} + \mathbf{v}_{y}\mathbf{j} + \mathbf{v}_{z}\mathbf{k}$$

$$\mathbf{v}_{x} = \mathbf{x}, \mathbf{v}_{y} = \mathbf{y}, \mathbf{v}_{z} = \mathbf{z}$$

$$v = \sqrt{v_x^2 + v_y^2 + v_z^2} = \sqrt{x^2 + x^2 + x^2}$$

$$\cos(\mathbf{v}, i) = \frac{\mathbf{v}_x}{\mathbf{v}}, \cos(\mathbf{v}, j) = \frac{\mathbf{v}_y}{\mathbf{v}}, \cos(\mathbf{v}, k) = \frac{\mathbf{v}_z}{\mathbf{v}}$$

6.4.1. Векторный способ задания ускорения



- Как определить быстроту изменения скорости точки?
- Пусть материальная точка М движется вдоль траектории
- $M(t+\Delta t)$ Определим приращение скорости за время Δt Определим среднее ускорение a_t

Переходя здесь к пределу $\Delta t \rightarrow 0$, получим мгновенное ускорение точки

$$a = \lim_{\Delta t \to 0} a_{\text{av}} = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = v = r$$

• Таким образом, ускорение точки – это векторная кинематическая величина, характеризующая быстроту изменения ее скорости и равная первой производной от скорости или второй производной от радиус-вектора по времени

6.4.2. Координатный способ задания ускорения

• Чтобы получить выражение ускорения при координатном способе задания движения точки, выразим вектор ускорения через его проекции на оси координат

$$\ddot{a} = \ddot{i}a_x + \ddot{j}a_y + \ddot{k}a_z$$

• С другой стороны,

$$\vec{a} = \vec{\nabla} = \vec{i} \nabla_x + \vec{j} \nabla_y + \vec{k} \nabla_z$$

• Сравнивая эти два выражения, находим

$$a_{x} = \bigotimes_{x}, \quad a_{y} = \bigotimes_{y}, \quad a_{z} = \bigotimes_{z},$$

$$a = \sqrt{a_{x}^{2} + a_{y}^{2} + a_{z}^{2}} = \sqrt{\bigotimes_{x}^{2} + \bigotimes_{y}^{2} + \bigotimes_{z}^{2}} = \sqrt{\bigotimes_{x}^{2} + \bigotimes_{x}^{2}} = \sqrt{\bigotimes_{x}^{2} + \bigotimes_{x}^{$$

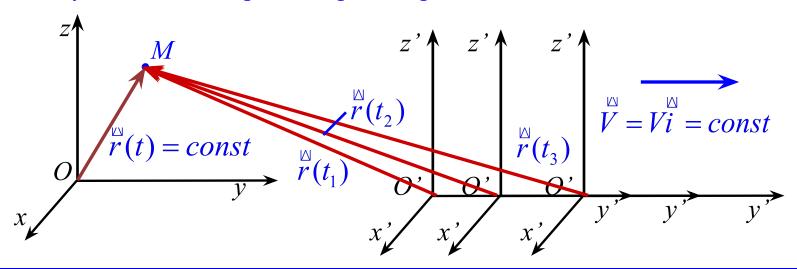
6.5. Аксиомы динамики

6.5.1. Закон инерции Галилея

1-я аксиома динамики

Свободная материальная точка покоится или равномерно и прямолинейно двигается

- Сформулированная аксиома является выражением того экспериментального факта, что отличить состояние покоя от равномерного и прямолинейного движения нельзя
- Действительно, если относительно некоторой системы отсуста K точка относительно системы K прямолинейно покоится, то всегда Можно Ностроить такую систему K, относительно которой со скоростью r(t) = Vt = i Vt данная точка будет двигаться равномерно и прямолинейно



6.5.2. Принцип относительности Галилея

- Системы отсчета, относительно которых свободная материальная точка покоится или равномерно и прямолинейно движется называются **инерциальными**
- Инерциальных систем отсчета существует бесконечно много и все они движутся друг относительно друга с постоянной скоростью
 - Все инерциальные системы отсчета эквивалентны —

Принцип относительности Галилея

Все законы механики одинаково формулироваться и во всех инерциальных системах отсчета

6.5.4 Второй закон Ньютона

Аксиома 2

Если в некоторой инерциальной системе отсчета на свободную материальную точку действует сила F, то скорость изменения импульса (количества движения) материальной точки равна действующей на нее силе

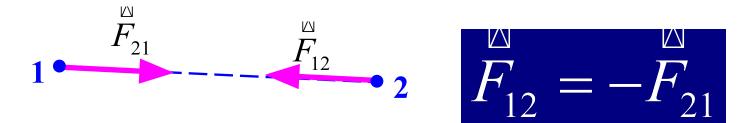
$$\frac{dp}{dt} = F$$
 или $\frac{dmv}{dt} = F$

- Т.о., масса является мерой инерции тела. Инертность тела, т.е. его способность двигаться без изменения скорости тем больше, чем больше масса. По этой причине эту массу называют инертной
 Масса величина аддитивная и
 - Масса величина аддитивная и $M = \sum_{i=1}^N m_i$
- В классической укранию и при полагается, что масса тела во всех инерциальні $m\frac{d\mathbf{v}}{dt} \equiv mr = F$ ета одинак ma = F геняется со временем

6.5.6. Третий закон Ньютона

Аксиома 3

Две материальные точки действуют друг на друга с силами, равными по величине и направленными вдоль одной прямой в противоположные стороны

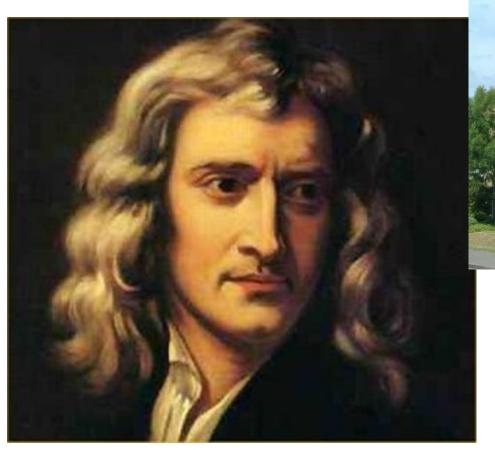


Аксиома 4

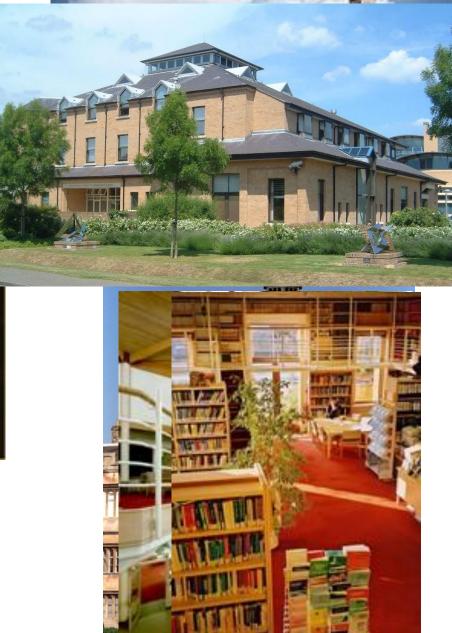
Действие на материальную точку произвольной системы n сил эквивалентно действию одной силы, равной их сумме

$$F = \sum_{i=1}^{n} F_i$$

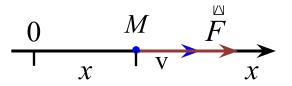
$$a = F/m = \sum_{k=1}^{n} a_k$$



Исаак Ньютон, 1642-1727, Вулсторн-Кембридж-Лондон



6.5.5. Силы, зависящие от скорости точки



rightarrow F Пусть точка массы m движется прямолинейно под действием силы F = F(v)

• Уравнение Ньютона в данном случае имеет вид

$$m\frac{d\mathbf{v}}{dt} = F(\mathbf{v}), \quad \mathbf{v} = \frac{dx}{dt}$$
 HY: $\mathbf{v}(0) = \mathbf{v}_0, x(0) = x_0,$

• Интегрируя первое уравнение:

$$\int_{v_0}^{v} \frac{dv}{F(v)} = t \implies f(v) = t \implies v = v(t)$$
Закон движения имеет вид
$$x = x_0 + \int_{v_0}^{t} v(t) dt$$

Твердое тело в газе $F = -\alpha v^2 v / |v|$

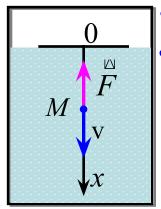
Твердое тело в жидкости $F = -\alpha v$

6.5.6. Движение в вязкой жидкости

Задача 6.1

Материальная точка массы m, двигающаяся прямолинейно с постоянной скоростью v, попадает в вязкую жидкость, где на нее действует сила сопротивления $F=-m\alpha$ v . Найти закон движения точки в жидкости.

Решение



- Выберем за начало отсчета положение входа точки в жидкость

$$m \nabla = -m \alpha v$$
 HY: $v(0) = v_0, x(0) = 0$

Уравнение Ньютона в данном случае имеет вид
$$m = -m\alpha v \quad \text{НУ:} \quad v(0) = v_0, x(0) = 0 \quad \Longrightarrow \quad v = v_0 e^{-\alpha t}$$

$$\int_{v_0}^{v} \frac{dv}{v} = -\alpha \int_{0}^{t} dt \quad \Longrightarrow \quad \ln \frac{v}{v_0} = -\alpha t \quad \Longrightarrow \quad v = v_0 e^{-\alpha t}$$

- Скорость движения точки в жидкости, т.о., экспоненциально затухает
- Закон движения находится интегрированием уравнения $\mathcal{A} = v_0 e^{-\alpha t}$

$$x = V_0 \frac{m}{\alpha} [1 - \exp(-\alpha t)]$$
 При $t \to \infty$ координата $x = V_0 \frac{m}{\alpha}$

На предыдущих лекциях

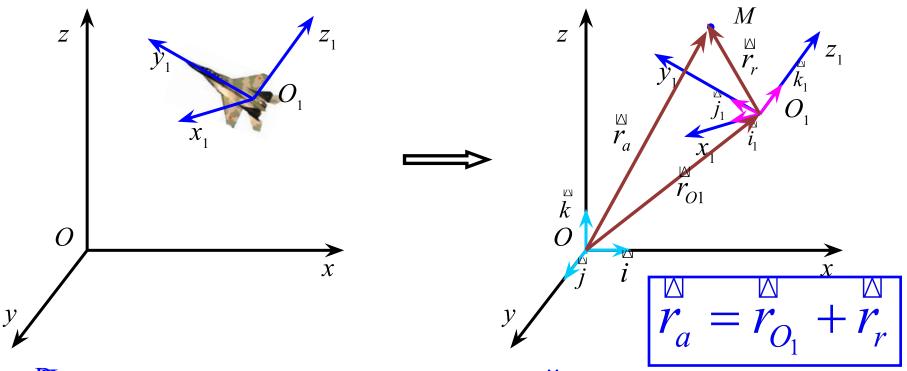
• Изучены законы, описывающие движение материальной точки относительно инерциальной системы отсчета, в частности, относительно покоящейся системы

"Согласно опытно установленному факту не существует никакого физически обнаруживаемого состояния движения, которое можно было бы назвать абсолютным покоем".



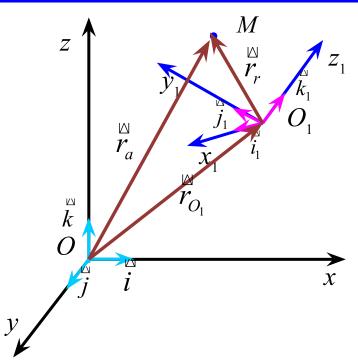
Как же описывать движение относительно неинерциальной системы отсчета?

6.6.1. Измерение расстояния относительно НСО



- **Врижение изиноситемы мунечину** ижной системы отсчета
- Выслемвасться простемым отсчета
- Движение относительно подвижной системы отсчета Наша задача описать движение точки относительно НСО называется относительным
- •Первижениеспохраимной ситетемв годичению сительно неподвижной называется переносным движением

6.6.2. Скорость относительно НСО



$$\begin{array}{ccc}
\stackrel{\square}{r_a} &= \stackrel{\square}{r_{O_1}} + \stackrel{\square}{r_r} \longrightarrow & \stackrel{\square}{v_a} &= \frac{dr_a^{\square}}{dt} = \frac{dr_{O_1}^{\square}}{dt} + \frac{dr_r^{\square}}{dt}
\end{array}$$

• Первый член равен

$$\frac{d\vec{r}_{O_1}}{dt} = \mathbf{N}i + \mathbf{N}j + \mathbf{K}k = \mathbf{V}_{O_1}$$

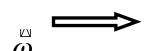
• С другой стороны,
$$r_r = x_1 \dot{i}_1 + y_1 \dot{j}_1 + z_1 \dot{k}_1 \Longrightarrow$$

$$\frac{d\vec{r}_r}{dt} = \underbrace{\vec{x}_1 \vec{i}_1 + \vec{y}_1 \vec{j}_1 + \vec{z}_1 \vec{k}_1}_{\mathbf{X}_1 \mathbf{X}_1 \mathbf{X$$

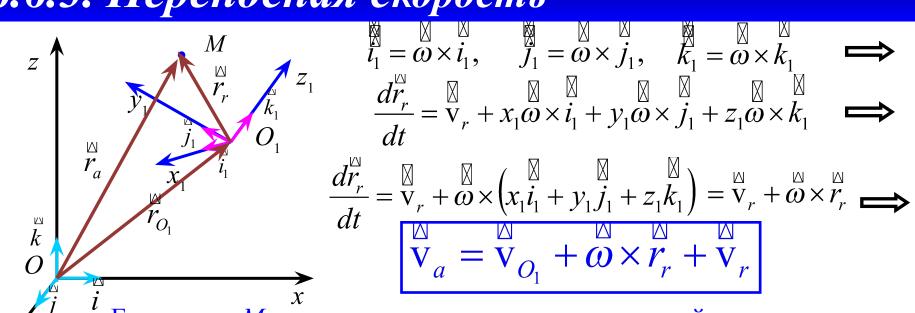
$$\mathbf{v}_r = \mathbf{k}_1 \mathbf{i}_1 + \mathbf{k}_1 \mathbf{j}_1 + \mathbf{k}_1 \mathbf{k}_1$$

$$\overset{\boxtimes}{\mathbf{v}}_{r} = \overset{\boxtimes}{\mathbf{x}}_{1} \overset{\boxtimes}{i_{1}} + \overset{\boxtimes}{\mathbf{y}}_{1} \overset{\boxtimes}{j_{1}} + \overset{\boxtimes}{\mathbf{x}}_{1} \overset{\boxtimes}{\mathbf{k}}_{1} \qquad \Longrightarrow \qquad \frac{d\overset{\boxtimes}{r_{r}}}{dt} = \overset{\boxtimes}{\mathbf{v}}_{r} + \overset{\boxtimes}{\mathbf{x}}_{1} \overset{\boxtimes}{i_{1}} + y_{1} \overset{\boxtimes}{j_{1}} + z_{1} \overset{\boxtimes}{k_{1}}$$

• Но изменение второго члена связано с изменением направлений единичных векторов НСО относительно ИСО, т.е. с вращением HCO относительно начала координат O_1 с угловой скоростью



6.6.3. Переносная скорость



- Если точка M не движется относительно подвижной системы отсчета, то $\overset{\bowtie}{\mathbf{v}}_r = \mathbf{0}$, и ее абсолютная скорость совпадает тогда со скоростью движения подвижной системы отсчета относительно неподвижной
- По определению это и есть скорость переносного движения

$$\mathbf{v}_e = \mathbf{v}_{O_1} + \boldsymbol{\omega} \times \boldsymbol{r}_r$$

Теорема. Абсолютная скорость точки равна сумме относительной и переносной скоростей

$$\mathbf{v}_a = \mathbf{v}_e + \mathbf{v}_r$$

6.6.4. Относительное ускорение

$$\mathbf{V}_{a} = \mathbf{V}_{O_{1}} + \boldsymbol{\omega} \times \boldsymbol{r}_{r} + \mathbf{V}_{r}$$

$$\Rightarrow a_{a} = \frac{d\mathbf{v}_{O_{1}}}{dt} + \frac{d(\boldsymbol{\omega} \times \boldsymbol{r}_{r})}{dt} + \frac{d\mathbf{v}_{r}}{dt}$$

- Первый член $\frac{d\overset{\square}{\nabla}_{O_1}}{dt} = \overset{\square}{a_{O_1}} \text{это ускорение начала HCO относительно ИСО}$ С другой стороны, $\frac{d(\overset{\square}{\omega} \times \overset{\square}{r_r})}{dt} = \frac{d\overset{\square}{\omega}}{dt} \times \overset{\square}{r_r} + \overset{\square}{\omega} \times \frac{d\overset{\square}{r_r}}{dt} = \overset{\square}{\varepsilon} \times \overset{\square}{r_r} + \overset{\square}{\omega} \times \begin{bmatrix} \overset{\square}{\omega} \times \overset{\square}{r_r} \\ \overset{\square}{\omega} \times \overset{\square}{r_r} \end{bmatrix}$
- Наконец последний член

$$\frac{d\overset{\square}{\mathbf{v}_{r}}}{dt} = \frac{d}{dt} \left(\overset{\square}{\mathbf{x}_{1}} \dot{i}_{1} + \overset{\square}{\mathbf{y}_{1}} \dot{j}_{1} + \overset{\square}{\mathbf{x}_{1}} \dot{k}_{1} \right) = \overset{\square}{\mathbf{x}_{1}} \dot{i}_{1} + \overset{\square}{\mathbf{y}_{1}} \dot{j}_{1} + \overset{\square}{\mathbf{x}_{1}} \dot{k}_{1} + \overset{\square}{\mathbf{y}_{1}} \dot{j}_{1} + \overset{\square}{\mathbf{x}_{1}} \dot{k}_{1} \right) = \overset{\square}{\mathbf{x}_{1}} \dot{i}_{1} + \overset{\square}{\mathbf{y}_{1}} \dot{j}_{1} + \overset{\square}{\mathbf{x}_{1}} \dot{k}_{1} + \overset{\square}{\mathbf{x}_{1}} \dot{k}_{1} + \overset{\square}{\mathbf{x}_{1}} \dot{k}_{1} = \overset{\square}{\mathbf{x}_{1}} \left(\omega \times \dot{i}_{1} \right) + \overset{\square}{\mathbf{y}_{1}} \left(\omega \times \dot{j}_{1} \right) + \overset{\square}{\mathbf{x}_{1}} \left(\omega \times \dot{k}_{1} \right) = \omega \times \dot{i}_{1} \overset{\square}{\mathbf{x}_{1}} + \omega \times \dot{j}_{1} \overset{\square}{\mathbf{y}_{1}} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{x}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{x}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{x}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{x}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{x}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{x}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{x}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{x}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{x}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{x}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{x}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{x}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{x}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{x}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{x}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{v}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{v}_{1}} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{v}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{v}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{v}_{1}} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{v}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \dot{k}_{1} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{v}_{1}} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{v}_{1}} = \omega \times \overset{\square}{\mathbf{v}_{1}} \overset{\square}{\mathbf{v}_{1}} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{v}_{1}} = \omega \times \dot{k}_{1} \overset{\square}{\mathbf{v}_{1}} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{v}_{1}} + \omega \times \dot{k}_{1} \overset{\square}{\mathbf{v}_{1}} = \omega \times \dot{k}_{1} \overset{\square}{\mathbf{v}_{1}} + \omega \times \dot{k}_{$$

Время собирать камни

6.6.5. Теорема Кориолиса

$$\overset{\boxtimes}{a_{a}} = \underbrace{\frac{d\overset{\boxtimes}{\mathbf{v}_{O_{1}}}}{dt}} + \underbrace{\frac{d(\overset{\boxtimes}{\omega} \times \overset{\boxtimes}{r_{r}})}{dt}} + \underbrace{\frac{d\overset{\boxtimes}{\mathbf{v}_{r}}}{dt}}_{dt}$$

$$\overset{\boxtimes}{a_{a}} = \overset{\boxtimes}{a_{O_{1}}} + \overset{\boxtimes}{\varepsilon} \times \overset{\boxtimes}{r_{r}} + \overset{\boxtimes}{\omega} \times \overset{\boxtimes}{\mathbf{v}_{r}} + \overset{\boxtimes}{\omega} \times (\overset{\boxtimes}{\omega} \times \overset{\boxtimes}{r_{r}}) + \overset{\boxtimes}{a_{r}} + \underbrace{\omega \times \overset{\boxtimes}{\mathbf{v}_{r}}}_{r} + \underbrace{\omega \times \overset{\boxtimes}{\mathbf{v}_{r}}}_{r}$$

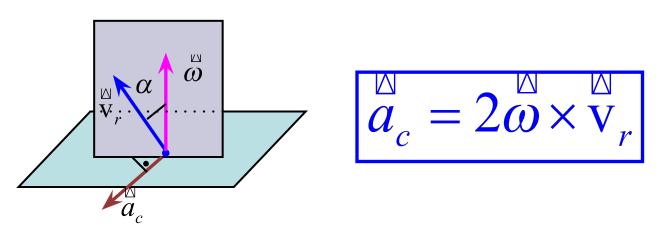
$$\overset{\boxtimes}{a_{a}} = \overset{\boxtimes}{a_{O_{1}}} + \overset{\boxtimes}{\varepsilon} \times \overset{\boxtimes}{r_{r}} + \overset{\boxtimes}{\omega} \times \overset{\boxtimes}{(\omega \times \overset{\boxtimes}{r_{r}})} + \overset{\boxtimes}{a_{r}} + 2\overset{\boxtimes}{\omega} \times \overset{\boxtimes}{\mathbf{v}_{r}}_{r}$$

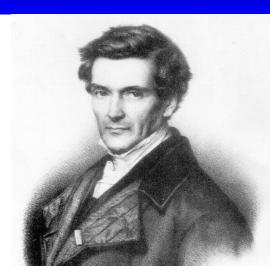
• Если точка покоится относительно подвижной системы отсчета, то ее движение совпадает с переносным движением, а абсолютное ускорение – с переносным ускорением $a_e = a_{O_1} + \varepsilon \times r_r + \omega \times (\omega \times r_r)$

Теорема. Абсолютное ускорение точки равно сумме относительного, переносного и кориолисова ускорений

$$a_a = a_r + a_e + a_c$$

6.6.7. Ускорение Кориолиса





Это ускорение обращается в нуль, если

Гюстав Гаспар Кориолис 1792-1843

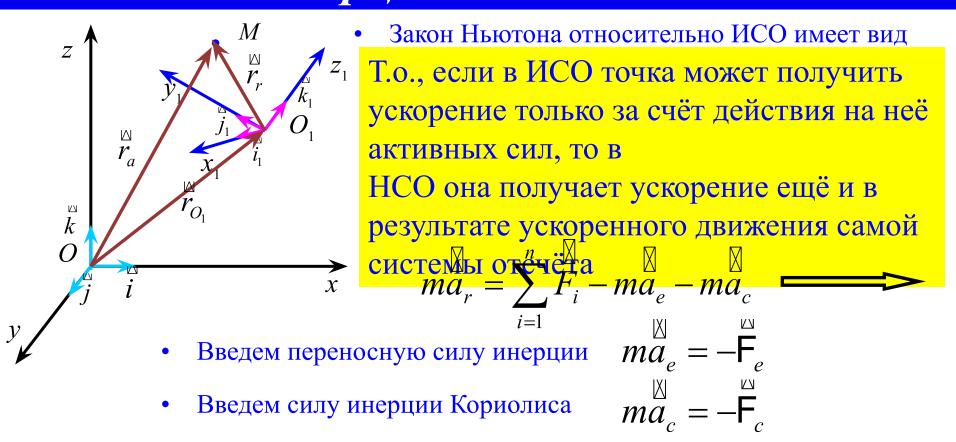
- угловая скорость подвижной системы отсчета равна нулю $\omega = 0$, т. е. переносное движение поступательное
- угловая скорость вращения подвижной системы отсчета параллельна относительной скорости ω
- относительная скорость точки равна нулю

Модуль ускорения Кориолиса равен

$$a_c = 2\omega v_r \sin \alpha$$

6.7. УРАВНЕНИЕ НЬЮТОНА ОТНОСИТЕЛЬНО НСО

6.7.1. Силы инерции



$$ma_r = \sum_{i=1}^n F_i + F_e + F_c$$

Это и есть уравнение Ньютона, описывающее движение точки относительно НСО

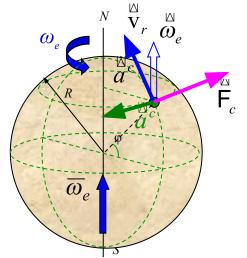
6.7.2. Природа сил инерции

- Обычные силы являются результатом взаимодействия тел между собой
- Они определяются соответствующими физическими законами и не зависят от выбора СО
 - Переносная и кориолисова силы инерции, наоборот, полностью определяются выбором CO
 - Они в различных неинерциальных системах отсчета разные
 - Движение с постоянным ускорением эквивалентно однородному гравитационному полю

Принцип эквивалентности Эйнштейна

6.7.3. Закон Бэра

• Пусть тело (точка) движется по поверхности Земли в северном полушарии вдоль меридиана на север



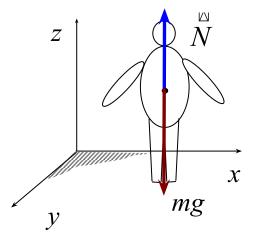
Бэр Карл Максимович

- Ускорение Кориолиса направлено по касательной к параллели
- Сила Кориолиса направлена противоположно

- Эта сила вызовет отклонение точки вдоль касательной к параллели вправо от направления её движения
- Т.о., в северном полушарии тело, движущееся вдоль меридиана, вследствие вращения Земли отклоняется вправо от направления движения
- В Южном полушарии отклонение происходит влево
- Этим объясняется тот факт, что реки, текущие в северном полушарии, подмывают правый берег, а в южном левый

6.8. HEBECOMOCTЬ

6.8.1. Что такое вес?



Относительно ИСО

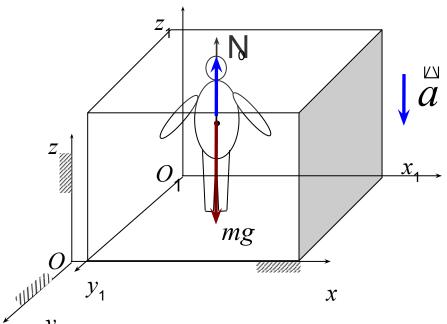
$$mg + N = 0 \implies N = mg$$

Относительно НСО

$$mg + N + F_e = 0, \quad F_e = -ma_e$$

Условие невесомости

$$g = a_e$$

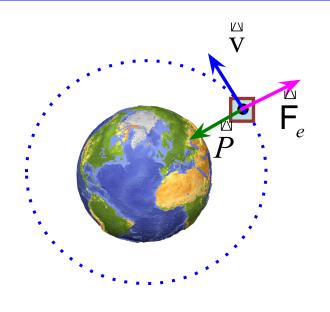


33

6.8.2. Когда же космонавты будут невесомыми?

6.8. HEBECOMOCTЬ 34

6.8.3. Невесомость на орбите



• Условие невесомости

$$P + F_e = 0$$

• Сила инерции равна

$$F_e = \frac{mv^2}{R}$$

• Пусть сила тяжести

$$P \cong mg \Longrightarrow$$

$$mg = \frac{mv^2}{R} \qquad \Longrightarrow \qquad v = \sqrt{gR}$$

6.9. После лекции

Симонов К.М. 1915-1979

6.9. ЗАКЛЮЧЕНИЕ 36