Решение задачи аппроксимации.

- •Нелинейная регрессия.
- •Нахождение коэффициентов нелинейной аппроксимирующей зависимости путём сведения её к линейной.
- •Выбор лучшей аппроксимирующей зависимости.

Содержание

- Основные виды нелинейных зависимостей, сводящихся к линейным;
- Пример 1:
- вычисление параметров каждой из трёх теоретических зависимостей;
- вычисление суммы квадратов отклонений для каждой зависимости;
- отображение на графиках экспериментальных точек и теоретических зависимостей;
- Определение лучшей из предложенных теоретических зависимостей, которые описывают набор экспериментальных данных.

Нелинейная регрессия. Нахождение коэффициентов нелинейной аппроксимирующей зависимости путём сведения её к линейной

Пусть известно, что полученные экспериментальные данные $\{x_i\}$, $\{y_i\}$, $i=1,2,\ldots,n$ описываются нелинейной зависимостью общего вида:

$$y = f(x, a, b)$$

Задача состоит в нахождении параметров этой зависимости, т. е. в вычислении коэффициентов a и b.

Часто нелинейная зависимость путём элементарных математических преобразований может быть сведена к линейной.

В этом случае для вычисления коэффициентов в Excel можно будет воспользоваться функциями НАКЛОН(...) и ОТРЕЗОК (...), рассмотренными ранее.

Основные виды нелинейных зависимостей, сводящихся к линейным

- 1) $y = a \cdot b^x$ показательная функция;
- 2) $y = a \cdot e^{b \cdot x}$ экспоненциальная зависимость;
- 3) $y = \frac{1}{a \cdot x + b}$ дробно-линейная функция;
- 4) $y = a \cdot ln(x) + b$ логарифмическая функция;
- 5) $y = a \cdot x^b$ степенная функция;
- 6) $y = a + \frac{b}{x}$ гиперболическая функция;
- 7) $y = \frac{x}{a \cdot x + b}$ дробно-рациональная функция.

На следующих примерах рассмотрим некоторые приёмы сведения нелинейной зависимости к линейной.

Пример 1.

Известно, что приведённые в таблице экспериментальные данные $\{x_i\}$, $\{y_i\}$, $i=1,2,\ldots,n$

X	2	3,5	5	6	7
у	4,53	3,12	2,7	1,88	1,55

могут быть описаны с помощью следующих теоретических зависимостей общего вида:

$$y1(x) = a \cdot e^{b \cdot x}$$
$$y2(x) = m + k \cdot ln(x)$$
$$y3(x) = \frac{c}{x+d}$$

Пример 1.

- 1 Определить, какая из предложенных теоретических зависимостей наилучшим образом описывает набор экспериментальных данных $\{x_i\}$, $\{y_i\}$, для чего:
- а) вычислить параметры каждой теоретической зависимости;
- б) вычислить сумму квадратов отклонений для каждой зависимости;
- в) отобразить на графиках (отдельно для каждой зависимости) экспериментальные точки и теоретические зависимости;
- 2 Предсказать значение Y при X = 11. Показать соответствующие точки на графиках.

<u>Для первой зависимости:</u>

$$y1(x) = a \cdot e^{b \cdot x}$$

Чтобы от произведения перейти к сумме и избавиться от возведения числа *е* в степень – прологарифмируем обе части выражения. Получим:

$$ln(y) = ln(a) + b \cdot x$$

Затем, выполним замену переменных:

$$z = ln(y),$$
 $c = ln(a),$

сводим зависимость к линейной:

$$z = c + x \cdot b$$
.

Далее в Excel с помощью функций НАКЛОН и ОТРЕЗОК найдём коэффициенты *c* и *b*.

Затем вычислим коэффициент a: a = exp(c).

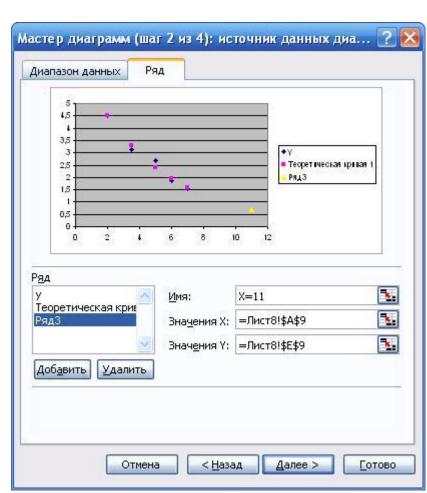
- 1 В ячейки А2:В7 введём исходные данные.
- **2** В ячейку С3 введём формулу =LN(В3) и скопируем её в ячейки С4:С7.
- **3** Для вычисления коэффициента a в ячейку В11 введём формулу =EXP(OTPE3OK(C3:C7;A3:A7)).
- **4** Для вычисления коэффициента *b* в ячейку В12 введём формулу = HAKЛOH(C3:C7;A3:A7).

	А	В	С	D	E
1	y=a*e ^{b*x}				
2	x	y	Ln(y)		
3	2	4,53	1,510722		
4	3,5	3,12	1,137833		
5	5	2,7	0,993252		
6	6	1,88	0,631272		
7	7	1,55	0,438255		
8			:		
9			8		
10			-EXP(O	TPEROK/OR	3:C7;A3:A7))
11	a=	6,884		11 EUON(CC	,.c/,AJ.A/))
12	b=	-0,210	=накло	H(C3:C7;A	(3:A7)
13	100	600	1 11 11 12 10	(00.07)	

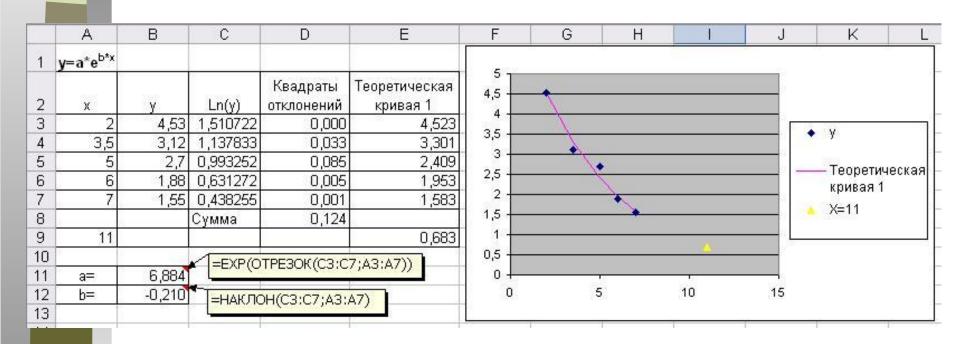
<u>Решение в Excel:</u>

5 Для вычисления квадратов отклонений заданной зависимости от экспериментальных данных в ячейку D3 введём формулу =(\$B\$11*EXP(\$B\$12*A3)-B3)^2 и скопируем её в ячейки D4:D7.

6 В ячейке D8 вычислим сумму квадратов отклонений:


=CУMM(D3:D8).

	D3	•	fx =(\$B\$	11*EXP(\$B\$12	*A3)-B3)^2	Š.
	А	В	С	D	E	F
1	y=a*e ^{b*x}		8	8		
2	х	у	Ln(y)	Квадраты отклонений		
3	2	4,53	1,510722	0,000		i.
4	3,5	3,12	1,137833	0,033		
5	5	2,7	0,993252	0,085		
6	6	1,88	0,631272	0,005		
7	7	1,55	0,438255	0,001		- 63
8			Сумма	0,124	=CYMM(D3:D7)
9			1(8)(8)			8
10			-EVP(O	TPE30K(C3:C7	7.40.47\\	1
11	a=	6,884	- EXITO	TESOR(CS.C)	,A3.A7))	
12	b=	-0,210	=накло	DH(C3:C7;A3:A	(7)	
13		10,000,000	I IESISZ K	21.1CO.1O7 JHO IF	" y	


- 7 Для построения теоретической кривой, используя найденные коэффициенты, в ячейку Е3 введём формулу =\$B\$11*EXP(\$B\$12*A3) и скопируем её в ячейки Е4:Е7.
- **8** Для предсказания значения Y при X=11 в ячейку A9 введём 11, а в ячейку E11 скопируем полученную формулу.

	E3	-	fx =\$B\$1	1*EXP(\$B\$12	*A3)
	Α	В	С	D	E
1	y=a*e ^{b*x}			ž	
2	x	У	Ln(y)	Квадраты отклонений	Теоретическая кривая 1
3	2	4,53	1,510722	0,000	4,523]
4	3,5	3,12	1,137833	0,033	3,301
5	5	2,7	0,993252	0,085	2,409
6	6	1,88	0,631272	0,005	1,953
7	7	1,55	0,438255	0,001	1,583
8			Сумма	0,124	3
9	11		10000	e 400	0,683
10			-EXP(O	ТРЕЗОК(СЗ:С	7.43.47))
11	a=	6,884		ii Esori(cs.c	(,00.8/))
12	b=	-0,210	=накло	DH(C3:C7;A3:	A7)
13					

- 9 Выделим диапазоны A2:B7 и E2:E7. С помощью **Мастера диаграмм** построим точечный график.
- 10 Для добавления на график предсказанного значения Y при X=11 на вкладке Ряд щёлкнем по кнопке Добавить и заполним соответствующие поля.
- 11 Щёлкнем по кнопке Готово.
- **12** На полученном графике с помощью форматирования представим теоретическую кривую в виде гладкой линии без маркеров.

Результат решения для первой зависимости в Excel:

Для второй зависимости:

$$y2(x) = m + k \cdot ln(x)$$

Чтобы свести данную зависимость к линейной выполним замену переменных:

$$z = ln(x)$$
.

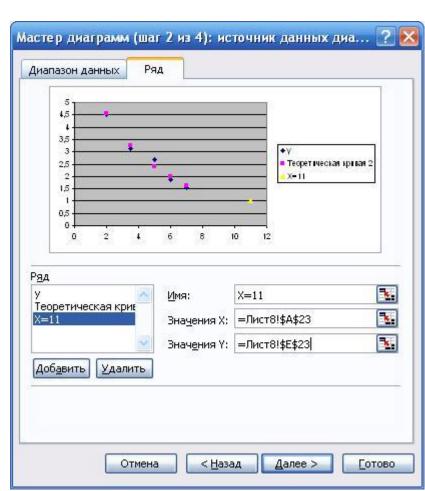
Получим линейную зависимость:

$$y = m + k \cdot z$$
.

Далее в Excel с помощью функций НАКЛОН и ОТРЕЗОК найдём коэффициенты m и k.

- **1** В ячейки А16:В21 введём (скопируем) исходные данные.
- 2 В ячейку С17 введём формулу =LN(A17) и скопируем её в ячейки С18:С21.
- **3** Для вычисления коэффициента m в ячейку B25 введём формулу =OTPE3OK(B17:B21;C17:C21).
- **4** Для вычисления коэффициента k в ячейку В26 введём формулу = HAKЛOH(В17:В21;С17:С21).

15	y=m+k*ln(:	x)		
16	Х	У	Ln(x)	
17	2	4,53	0,6931	
18	3,5	3,12	1,2528	
19	5	2,7	1,6094	
20	6	1,88	1,7918	
21	7	1,55	1,9459	
22		9		
23		80		
24		-0	1_0TDE2	OK(B17:B21;C17:C21)
25	m=	6,143	-I-OTFE3	OK(B17.B21,C17.C21)
26	k=	-2,322	=HAK DO	DH(B17:B21;C17:C21)
27	le le		-131010	5/1(017.021)(017.021)


- **5** Для вычисления квадратов отклонений заданной зависимости от экспериментальных данных в ячейку D17 введём формулу =(\$B\$25+\$B\$26*LN(A17)-B17)^2 и скопируем её в ячейки D18:D21.
- **6** В ячейке D22 вычислим сумму квадратов отклонений: =CУММ(D17:D21).

15	y=m+k*ln(x)			
16	x	У	Ln(x)	Квадраты отклонений	
17	2	4,53	0,6931	0,000	_/*D*35, *D*36*! N/(0.17) D17\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
18	3,5	3,12	1,2528	0,013	=(\$B\$25+\$B\$26*LN(A17)-B17)^2
19	5	2,7	1,6094	0,087	
20	6	1,88	1,7918	0,010	
21	7	1,55	1,9459	0,006	000000000000000000000000000000000000000
22			Сумма	0,116	CYMM(D17:D21)
23				1 92	
24			• 07050	01/047.004.0	17.001
25	m=	6,143	= = OTPE3	OK(B17:B21;C	17:021)
26	k=	-2,322	-HVK DC	H(B17:B21;C1	7:(21)
27			-HAIOIC	/ I(D1/ .D21,C1	7,021)

- 7 Для построения теоретической кривой, используя найденные коэффициенты, в ячейку Е17 введём формулу =\$B\$25+\$B\$26*LN(A17) и скопируем её в ячейки Е18:Е21.
- **8** Для предсказания значения Y при X=11 в ячейку A23 введём 11, а в ячейку E23 скопируем полученную формулу.

	E17	•	fx =\$B\$2	5+\$B\$26*LN(A17)
	А	В	С	D	Е
15	y=m+k*ln	(x)			
16	х	у	Ln(x)	Квадраты отклонений	Теоретическая кривая 2
17	2	4,53	0,6931	0,000	4,533
18	3,5	3,12	1,2528	0,013	3,234
19	5	2,7	1,6094	0,087	2,406
20	6	1,88	1,7918	0,010	1,982
21	7	1,55	1,9459	0,006	1,624
22	S S		Сумма	0,116	(3)
23	11				0,575
24			/ _OTDE2	OK/017-021-C	17,001
25	m=	6,143	=UTPE3	OK(B17:B21;C	.17:021)
26	k=	-2,322	-UAK DO	U/017:021:01	17:C21\
27		ini-	=HAK/IC	H(B17:B21;C1	17,021)

- **9** Выделим диапазоны A16:B21 и E16:E21. С помощью **Мастера диаграмм** построим точечный график.
- 10 Для добавления на график предсказанного значения Y при X=11 на вкладке Ряд щёлкнем по кнопке Добавить и заполним соответствующие поля.
- 11 Щёлкнем по кнопке Готово.
- **12** На полученном графике с помощью форматирования представим теоретическую кривую в виде гладкой линии без маркеров.

Результат решения для второй зависимости в Excel:

15	y=m+k*ln	(x)				E 19580	30	30) (1) (1) (1) (1)
	90	0.770		Квадраты	Теоретическая	5 7			10	
16	Х	у	Ln(x)	отклонений	кривая 2	4,5				
17	2	4,53	0,6931	0,000	4,533	4 +			T	7000 700
18	3,5	3,12	1,2528	0,013		3,5				• у
19	5	2,7	1,6094	0,087	2,406	3			20	—— Теоретическая
20	6	1,88	1,7918	0,010	1,982	2,5			33	кривая 2
21	7	1,55	1,9459	0,006		2			783	×=11
22		100	Сумма	0,116		1,5			-	V-11
23	11		37000		0,575	11				
24		36	A_OTDEO	OK/047-001-0	the state of the s	0,5				
25	m=	6,143	=OTPE3	OK(B17:B21;C	.17:021)	0 +				
26	k=	-2,322	LIMICHO	N 1/047,004.0	17,001)	0	5	10	15	
27	1000 0		=HAR/IC)H(B17:B21;C	17:021)	Section 2				

<u>Для третьей зависимости:</u>

$$y3(x) = \frac{c}{x+d}$$

Чтобы свести данную зависимость к линейной перевернём обе части исходной зависимости:

$$\frac{1}{1} = \frac{x+d}{1} \qquad \qquad \frac{1}{1} = \frac{x}{1} + \frac{d}{1}$$

и выполним замену переменных: c

$$z = \frac{1}{-}, \qquad a = \frac{1}{-}, \qquad b = \frac{d}{-}.$$

В результате получим линейную зависимость:

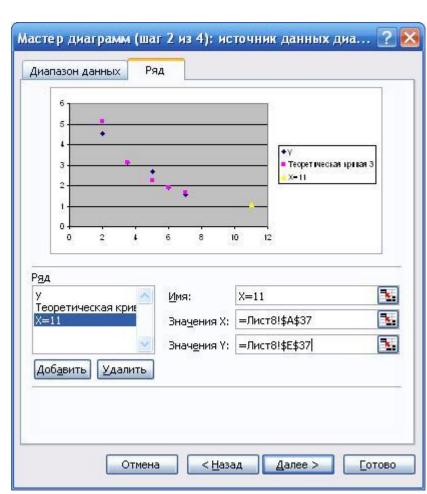
$$z = a \cdot x + b$$
.

Далее в Excel с помощью функций НАКЛОН и ОТРЕЗОК найдём коэффициенты *a* и *b, u затем* вычислим *c* и *d:*

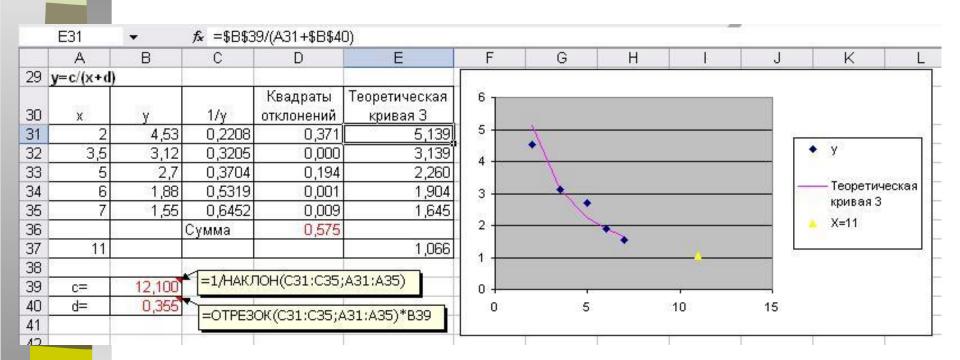
$$c = \frac{1}{a},$$
 $d = b \cdot c$.

- 1 В ячейки А30:В35 введём (скопируем) исходные данные.
- **2** В ячейку С31 введём формулу =1/В31 и скопируем её в ячейки С32:С35.
- **3** Для вычисления коэффициента c в ячейку ВЗ9 введём формулу =1/HAKЛOH(C31:C35;A31:A35).
- **4** Для вычисления коэффициента d в ячейку B26 введём формулу =OTPE3OK(C31:C35;A31:A35)*B39.

	A	В	С	D	E
29	y=c/(x+d)				
30	х	У	1/y	=1/B31	
31	2	4,53	0,2208	-1/031	
32	3,5	3,12	0,3205	-712	
33	5	2,7	0,3704		
34	6	1,88	0,5319		Ų.
35	7	1,55	0,6452		
36		- 00			Maria Maria
37		Ĭ.	8		
38			1 ALAK II	OH(C31:C35	·A21·A25\
39	c=	12,100	-1/UNIO1	Cri(Coricoo	,A31,A33)
40	d=	0,355	-OTPESO	W/C21+C25+/	\31:A35)*B3
41			-01FE3C	M(CO1,CO0),R	431.A33) B3


- **5** Для вычисления квадратов отклонений заданной зависимости от экспериментальных данных в ячейку D31 введём формулу =(\$B\$39/(A31+\$B\$40)-B31)^2 и скопируем её в ячейки D32:D35.
- **6** В ячейке D36 вычислим сумму квадратов отклонений: =CУММ(D31:D35).

	Α	В	С	D	Е	F	G
29	y=c/(x+d)			J			n n
30	x	у	1/y	Квадраты отклонений	<u> </u>	0//A21_¢₽¢	40)-B31)^2
31	2	4,53	0,2208	0,371	-(4042	is) (Watt dot	10)-031) 2
32	3,5	3,12	0,3205	0,000			
33	5	2,7	0,3704	0,194			
34	6	1,88	0,5319	0,001	e e		
35	7	1,55	0,6452	0,009	-CVMN	1(D31:D35)	ki l
36		309	Сумма	0,575	-C31VIIV	(031.033)	
37			11 1107 E	(A)			
38		500	4 0 1416	BOLL/COT COE	A 04 - A 0E)	id of	
39	c=	12,100	=1/HAR	ПОН(С31;С35;	(A31:A35)		
40	d=	0,355	-OTPES	ЮК(C31:C35;A	\21·A25*	830	
41			_O11E3	3,000,100)	-01.M00)	003	


- 7 Для построения теоретической кривой, используя найденные коэффициенты, в ячейку Е31 введём формулу =\$B\$39/(A31+\$B\$40) и скопируем её в ячейки Е32:Е35.
- **8** Для предсказания значения Y при X=11 в ячейку А37 введём 11, а в ячейку Е37 скопируем полученную формулу.

	E31	•	<i>f</i> ≈ =\$B\$3	9/(A31+\$B\$4I	D)
	А	В	С	D	E
29	y=c/(x+d)				
30	х	у	1/y	Квадраты отклонений	Теоретическая кривая З
31	2	4,53	0,2208	0,371	5,139
32	3,5	3,12	0,3205	0,000	3,139
33	5	2,7	0,3704	0,194	2,260
34	6	1,88	0,5319	0,001	1,904
35	7	1,55	0,6452	0,009	1,645
36			Сумма	0,575	
37	11				1,066
38					
39	c=	12,100	=1/HAK/	70H(C31:C35;	(A31:A35)
40	d=	0,355	-OTDE2	OK/C21, C25,/	\31:A35)*B39
41			=OTPE3	01,000,1000,1	431.433) D39
12			10-		1.22

- 9 Выделим диапазоны A30:B35 и E30:E35. С помощью **Мастера диаграмм** построим точечный график.
- 10 Для добавления на график предсказанного значения Y при X=11 на вкладке Ряд щёлкнем по кнопке Добавить и заполним соответствующие поля.
- **11** Щёлкнем по кнопке **Готово**.
- **12** На полученном графике с помощью форматирования представим теоретическую кривую в виде гладкой линии без маркеров.

Результат решения для третьей зависимости в Excel:

Выбор лучшей аппроксимирующей зависимости

Рассмотрим результаты, полученные в ходе решения задачи.

Суммы квадратов отклонений:

- для первой зависимости 0,124;
- для второй зависимости 0,116;
- для третьей зависимости 0,575.

Лучшей аппроксимирующей зависимостью является та, сумма квадратов отклонений которой от экспериментальных данных является **наименьшей**.

Следовательно, в нашем примере, лучшей является вторая зависимость

$$y2(x) = m + k \cdot ln(x)$$

Спасибо за внимание!