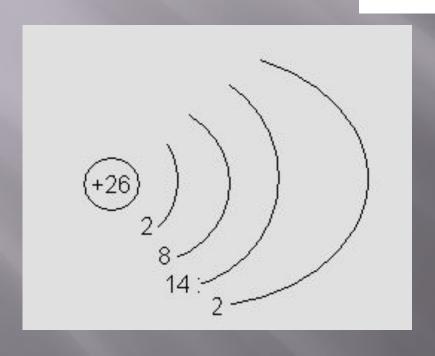
Железо и его соединения



Положение в Периодической системе

		CV	тстеме	
		VII		
4.9 54s ²	26 55.8 3d ⁶ 4s ²	27		
,4,7	Fe 2,3 железо	СО КОБАЛЬ	Порядковый номер	26
98)	44 101.1		Период	4
			Группа	8
			Полгруппа	побочная

Строение атома

 $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$

C. O. : +2, +3

Нахождение в природе.

ХАЛЬКОПИРИТ

ПИРИТ

Важнейшие железные руды

- 1. магнитный железняк Fe_3O_4
- 2. красный железняк Fe_2O_3
- з. бурый железняк Fe₂O₃ · 3H₂O
- 4. железный колчедан FeS₂

Fe₃O₄ Магнетит

Fe₂O₃ Гематит

FeS₂ Пирит

Важнейшие соединения железа

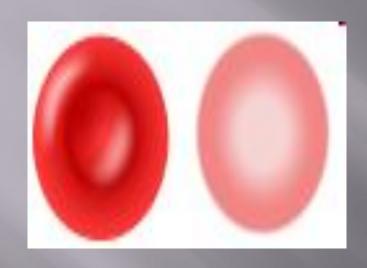
• Соль Мора: FeSO₄ (NH₄)₂SO₄ 6H₂O. Представляет собой парамагнитные, неярко сине-зелёные моноклинные кристаллы. Устойчива на воздухе. Соль Мора используется в медицине (добавляется в пищу, или в виде фармакопейного препарата, при нехватке в организме больного железа), для пропитки древесины для защиты её от

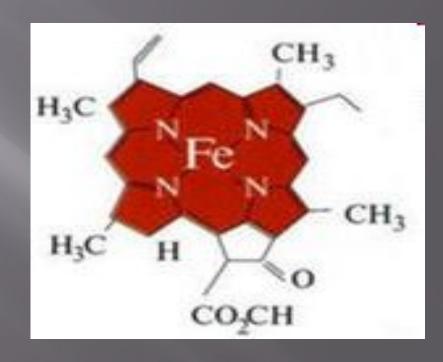
Железный купорос FeSO₄ 7H₂O.
 Применяется в текстильной промышленности, в сельском
 хозяйстве как фунгицид, для
 приготовления минеральных красок.

гниения.

Роль железа в жизнедеятельности организмов.

Ионы Fe необходимы для питания и дыхания растений Повышают яркость зелёной Окраски растений В случае потери зелёной окраски растение лечат железным купоросом FeSO4 7H2O


Ион Fe²⁺ - зелёная окраска


Роль железа в жизнедеятельности организмов.

Ион Fe³⁺ - красная окраска листьев, плодов.

Роль железа в жизнедеятельности организмов.

Простое вещество

Физические свойства

- Твердое
- Серо-серебристое
- Блестящее
- Хорошо проводит тепло и электрический ток
- Достаточно ковкое и пластичное
- Обладает магнитными свойствами

Свойство металла при повышении температуры приобретать разные кристаллические решетки, а, следовательно, и разные физикомеханические свойства, принято называть аллотропией или полиморфизмом.

Полиморфные модификации обозначают строчными греческими буквами а, β, γ, δ и т. д., причем а соответствует модификации, существующей при наиболее низкой температуре.

Полиморфизм характерен для железа, олова, кобальта, марганца, титана и некоторых других металлов.

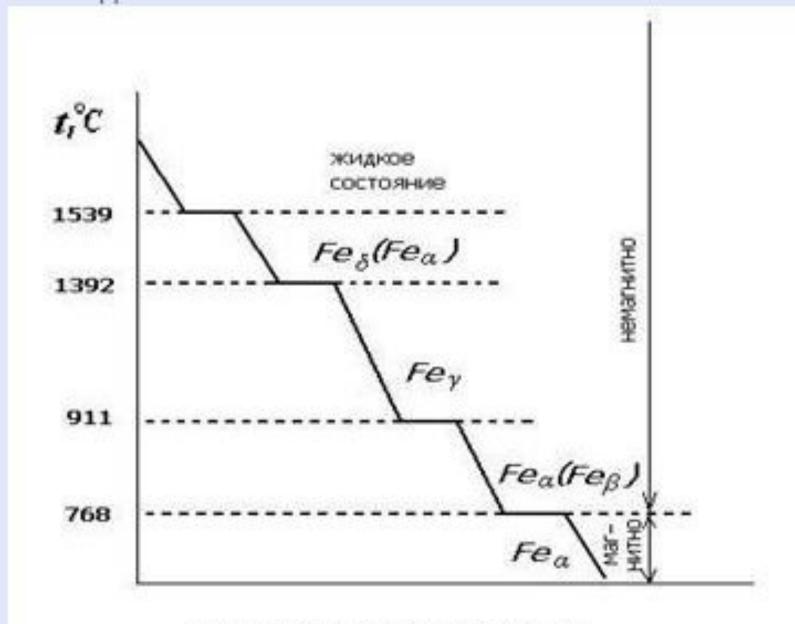
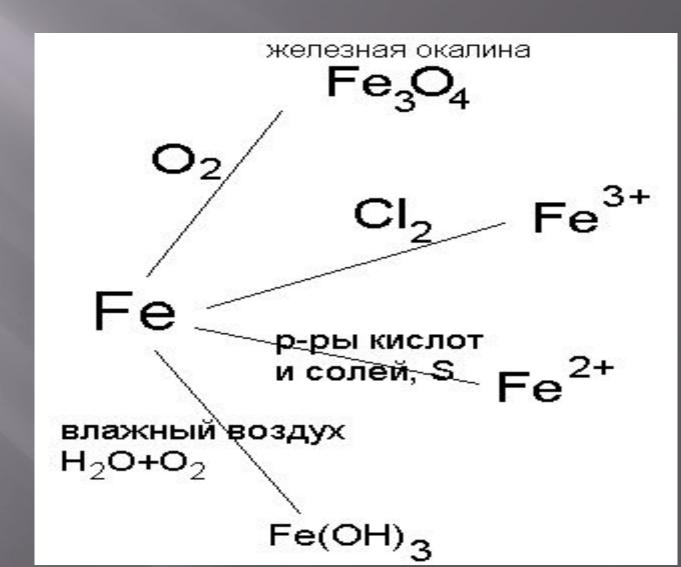
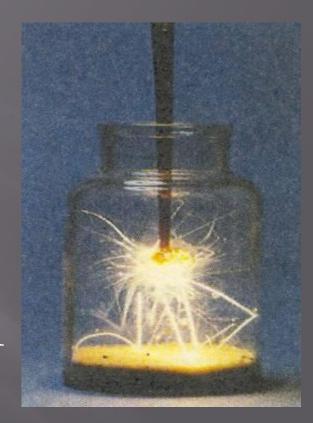



Рис.5 Кривая охлаждения железа.

Химические свойства

Металл средней активност и


Химические свойства

$$\blacksquare$$
 3Fe + 2O₂ = Fe₃O₄

• Fe + 2HC
$$\overline{l}$$
 = FeC l_2 + H_2

$$\blacksquare$$
 Fe + S = FeS

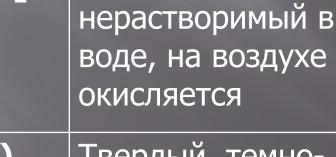
• Fe + O₂ +
$$\vec{H}_2$$
O = Fe(OH)₃

Концентрированные азотная и серная кислоты при комнатной температуре пассивируют железо, а при нагревании реакции протекают следующим образом:

■ Fe + 4HNO₃
$$\rightarrow$$
 Fe(NO₃)₃ + NO↑ +2H₂O
25%

Название	Формула	Своиства	Характер
Оксид железа (II)	FeO	Твердый, темно-серый, нерастворимый в воде, на воздухе окисляется	основный
Оксид железа (III)	Fe ₂ O ₃	Твердый, темно- коричневый, нерастворимый в воде	амфотер ный
Железная окалина	Смесь FeO и Fe₂O₃	Обладает магнитными свойствами «магнитный железняк»	

идроксиды железа


OSAN WONOROTT ENKI 7FI	A7A(II)
HasBar	- 11/

Формула
Fe(OH),

Свойства

(III)

окисляется Твердый, темнокоричневый, нерастворимый в

Твердый, зеленый,

амфотерный

Гидроксид железа

Fe(OH)₃ воде

ГИДРОКСИД ЖЕЛЕЗА (II) Fe(OH)₂.

Получают гидроксид железа (II) следующим образом:

■
$$FeSO_4 + 2NaOH \rightarrow Fe(OH)_2 \downarrow + Na_2SO_4$$

Гидроксид железа (II) окисляется кислородом воздуха до гидроксида железа (III):

$$\blacksquare 4Fe(OH)_2 + O_2 + 2H_2O \rightarrow 4Fe(OH)_3 \downarrow$$

воздух красно-бурый

Сульфат железа (II) в окислительно-восстановительных реакциях может быть восстановителем:

$$10\text{FeSO}_4 + 8\text{H}_2\text{SO}_4 + 2\text{KMnO}_4 \rightarrow 5\text{Fe}_2(\text{SO}_4)_3 + 2\text{MnSO}_4 + \text{K}_2\text{SO}_4 + 8\text{H}_2\text{O}_4$$

Доказательство амфотерности Fe_2O_3 и $Fe(OH)_3$.

- $Fe_2O_3 + 3H_2SO_4 \rightarrow Fe_2(SO_4)_3 + 3H_2O_4$
- $\overline{ } \quad \overline{ Fe_2O_3 + 2NaOH + 3H_2O \rightarrow 2Na[Fe(OH)_4]}$

- $2\text{Fe}(OH)_3 + 3H_2SO_4 \rightarrow \text{Fe}_2(SO_4)_3 + 6H_2O$
- $Fe(OH)_3 + 3NaOH \rightarrow Na_3[Fe(OH)_6]$
- $Fe(OH)_3 + NaOH \rightarrow Na[Fe(OH)_4]$

Качественные реакции на Fe 2+

- 1. FeCl₂+2NaOH□Fe(OH)₂ + 2NaCl зеленый
 - 2. $\operatorname{FeCl}_2 + \operatorname{K}_3(\operatorname{Fe}(\operatorname{CN})_6)$ \square красная кровяная соль $\operatorname{KFe}(\operatorname{Fe}(\operatorname{CN})_6) + 2\operatorname{KCl}$ «турнбуллева синь»

Качественные реакции на Fe ³⁺

- 1. FeCl₃+3NaOH□Fe(OH)₃ + 3NaCl бурый
- 2. FeCl₃ + K₄(Fe(CN)₆) □
 желтая кровяная соль
 KFe(Fe(CN)₆) + 3KCl
 «берлинская лазурь»

Качественные реакции на Fe 3+

 $FeCl_3 + KCNS \square Fe(CNS)_3 + KCl$

роданид калия

