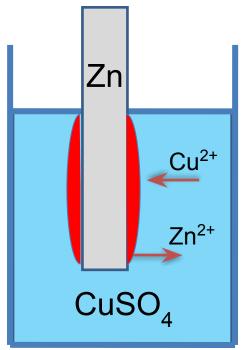


ОСНОВЫ ЭЛЕКТРОХИМИИ

Электрохимические процессы

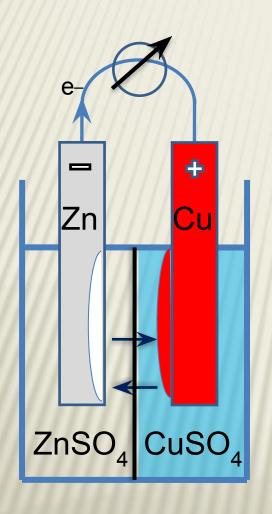
Электрохимия - это наука, которая изучает процессы, либо протекающие с возникновением электрического тока, либо вызванные электрическим током.


Электрохимические процессы – это частный случай окислительно-восстановительных р-ций. ОВР можно осуществлять двумя способами:

- 1) при прямом контакте окислителя и восстановителя, когда электроны переходят от восстановителя к окислителю непосредственно.
- 2) при пространственном разделении окислителя и восстановителя, когда электроны переходят по проводнику электрического тока по внешней цепи.

Первый способ проведения ОВР

$$Zn + CuSO_4 = Cu + ZnSO_4$$


$$Zn^{0} + Cu^{2+} + SO_{4}^{2-} = Cu^{0} + Zn^{2+} SO_{4}^{2-}$$

$$Zn^{0} + Cu^{2+} = Zn^{2+} + Cu^{0}$$

$$Zn^{0}_{\text{(металл)}} - 2e^{-} = Zn^{2+}_{\text{(раствор)}}$$
 $Cu^{2+}_{\text{(раствор)}} + 2e^{-} = Cu^{0}_{\text{(металл)}}$

Второй способ проведения ОВР Гальванический элемент Якоби- Даниэля

электродные процессы:

(-) A:
$$Zn^{0} - 2e \longrightarrow Zn^{2+}_{(p-p)}$$

(+) K: $Cu^{2+}_{(p-p)} + 2e \longrightarrow Cu^{0}$
 $Zn + Cu^{2+} = Zn^{2+} + Cu$
 $Zn + CuSO_{4} = ZnSO_{4} + Cu$

Краткая схема Г.Э.: (-) A: Zn| ZnSO₄|| CuSO₄|Cu (+)K Устройства, в к-рых энергия химической р-ции непосредственного преобразуется в электрическую энергию, называются химическими источниками электрической энергии или химическими источниками тока (ХИТ).

В технике ХИТы, в которых протекают необратимые реакции принято называть гальваническими элементами: их нельзя перезаряжать и можно использовать однократно.

ХИТы, в которых протекают обратимые реакции, называют *аккумуляторами*: их можно перезаряжать и использовать многократно.

Электродвижущая сила (ЭДС)

$$\Delta G < 0$$

при p = const и T = const $\Delta G = \Delta H - T \cdot \Delta S$,

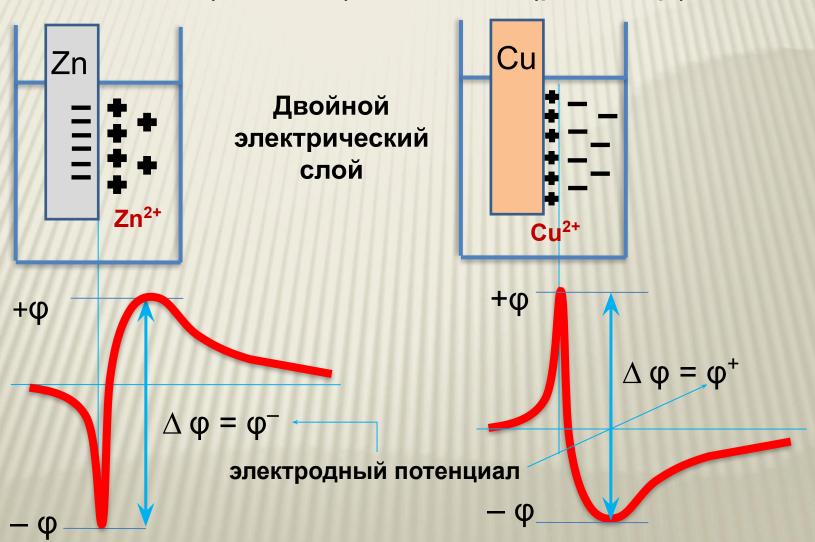
где
$$\Delta H = \Delta U + p \Delta V$$
, а $\Delta U = Q_p - A$ ($A = p \Delta V + A_{3n} + ...$)

подставим
$$\Delta G = Q_p + p \Delta V - p \Delta V - A_{3Л} - T \Delta S$$

для обратимых процессов $Q_p = T \cdot \Delta S$, следовательно

$$\Delta G = -A_{an} = -q \Delta E < 0$$

q = n F, где $F = e^- N_{\Delta} = 96500$ Кл (A·сек) = 26,8 A·час


$$\Delta G = -A_{3\Pi} = -n F \Delta E < 0$$
 значит $\Delta E > 0$

поскольку ΔE — разность потенциалов м. в-лем и ок-лем, то

$$\Delta E = \varphi_{o\kappa - nb}^{+} - \varphi_{e-nb}^{-}$$

Возникновение электродного потенциала

 Me^{z+} (металл) \rightleftharpoons Me^{z+} (раствор)

При изучении потенциалов различных электродных процессов установлено, что их величины зависят от трех факторов:

- 1) от природы веществ участников электродного процесса,
- 2) от соотношения между концентрациями этих веществ и
- 3) от температуры системы. Эту зав-сть выражает **уравнение Нернста** (В. Нернст, 1889 г.):

$$\varphi = \varphi^0 + 2,3 \frac{RT}{nF} lg \frac{[Ox]}{[Red]}$$

Стандартный электродный потенциал - это потенциал данного электродного процесса при конц-циях (активностях) всех участвующих в нем веществ, равных единице.

$$\varphi = \varphi^{0} + \frac{0.059}{n} lg \frac{[Ox]}{[Red]} \qquad \varphi_{Me^{n+}/Me^{0}} = \varphi^{0} + \frac{0.059}{n} lg [Me^{n+}]$$

ЭЛЕКТРОХИМИЧЕСКИЙ РЯД НАПРЯЖЕНИЙ МЕТАЛЛОВ

Li, K, Ba, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Co, Sn, Pb, H2, Cu, Hg, Ag, Au

ослабление восстановительных свойств активности

Водородный электрод

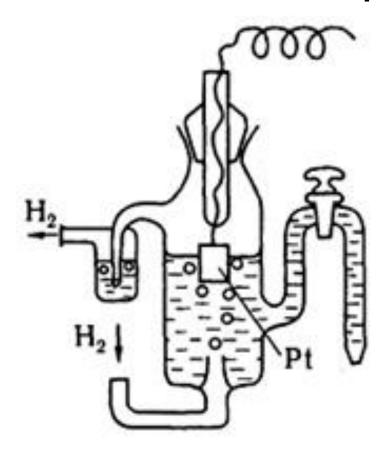
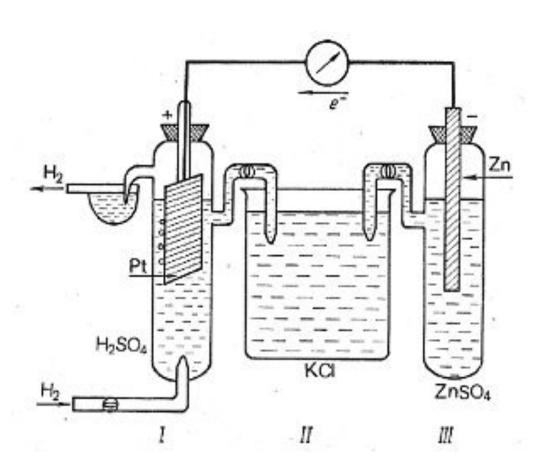


Рис. 3. Водородный электрод.

Для построения численной шкалы электродных потенциалов нужно потенциал какого-либо электродного процесса принять равным нулю. В качестве эталона для создания такой шкалы принят электродный процесс


$$2H^+ + 2e^- = H_2$$
.

Изменение энергии Гиббса в этой полуреакции при стандартных условиях, принимается равным нулю. Стандартный потенциал данного электродного процесса принят также равным нулю.

$$\phi = \phi^{\circ} + 0,059 \ \text{lg}[H^{+}] - 0,030 \ \text{lgp}_{H2}$$

 $\phi = \phi^{\circ} + 0,059 \ \text{lg}[H^{+}] = 0,059 \ \text{lg}[H^{+}].$

учитывая, что $lg[H^+] = - pH$, получаем: $\phi = - 0.059 pH$.

Определение величины электродных потенциалов

$$\Delta E = \phi_x - \phi_H^0 =$$
$$= \phi_x - 0$$

$$\Delta E = \phi_x$$

Концентрационные элементы

$$\phi_1 = -0.059 \text{ pH}_1 \quad \phi_2 = -0.059 \text{ pH}_2$$

$$\Delta E = \varphi^+ - \varphi^- = -0.059 \Delta pH$$

Задача 1. Определить знаки электродов в гальван. эл-те $Co[CoCl_2||AlCl_3|Al]$, указать анод и катод, объяснить механизм возникновения тока в данном элементе.

Решение:

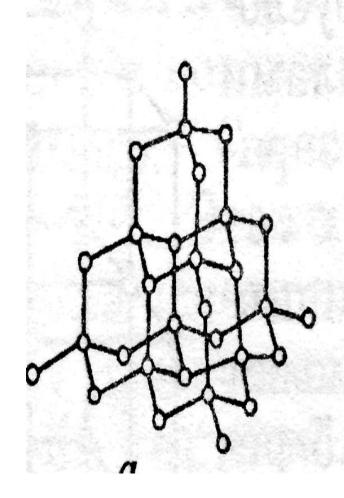
Возникновение эл.тока в данном ГЭ связано с разной поляризацией электродов и протеканием ОВР.

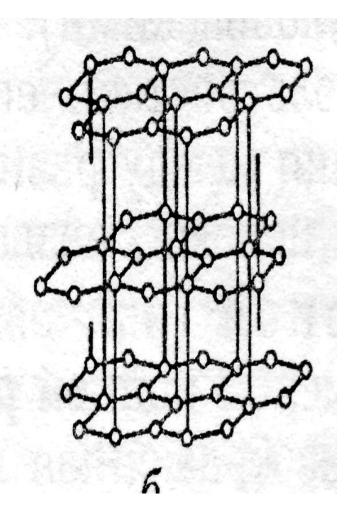
- С.Б. Бурухин, О.А. Ананьева
- «Введение в электрохимию»

Физические типы кристаллических решеток

• В зависимости от природы частиц, находящихся в узлах кристаллической решетки, и от характера сил взаимодействия между частицами различают четыре типа кристаллических решеток и соответственно четыре типа кристаллов: *ионные, атомные,* металлические и молекулярные.

• Ионные кристаллы


В узлах кристаллической решетки располагаются ионы разных знаков. Силы взаимодействия между ними являются в основном электростатическими - кулоновского происхождения.


- Атомные кристаллы
- В узлах кристаллической решетки размещаются нейтральные атомы. Связь, объединяющая в кристалле (а также и в молекуле) нейтральные атомы, ковалентная.

- Характерные примеры атомных кристаллов алмаз и графит.
- Абсолютно идентичные по химической природе (элемент С из 6 группы), они совершенно различаются кристаллическим строением:

АЛМАЗ

ГРАФИТ

- Металлические кристаллы
- Во всех узлах кристаллической решетки расположены положительные ионы металла.
 Между ними беспорядочно, подобно молекулам газа, движутся электроны – электронный газ.

- Молекулярные кристаллы
- В узлах кристаллической решетки помещаются определенным образом ориентированные молекулы. Силы связи между молекулами в кристалле имеют ту же природу, что и силы притяжения между молекулами
- Ван-дер-Ваальса или водородная связь.

• Молекулярные решетки образуют следующие вещества:

$$H_2, N_2, O_2, CO_2, H_2O$$

• Т.о. лед – молекулярный кристалл.