

Содержание

Реакции замещения в ароматическом ряду

S_E в ароматическом ряду

Meханизм S_E

- Общий вид
- Нитрование
- Сульфирование
- Галогенирование
- Алкилирование
- Ацилирование

Заместители I и II рода

Примеры реакций ЅЕ

Список литературы

Реакции замещения (в ароматическом ряду)

S

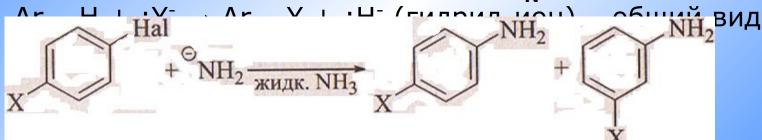
Нуклеофильное замещение

(S_N)

Электрофильное замещение

(SE)

Радикальное замещение (SR)



Реакции замещения (в ароматическом ряду)

• Электрофильное замещение (S_F)

$$Ar - H + E^+ \rightarrow Ar - E + H^+(протон) - общий вид $C_6H_6 + HNO_{3 (конц)} \rightarrow C_6H_5NO_2 + H_2O$ - нитрование$$

Нуклеофильное замещение (S_N)

• Радикальное замещение (S_R)

$$Ar - H + R^{-} \rightarrow Ar - R + H^{-}$$
 (радикал водорода) – общий вид $C_6H_5CH_3 + 3Cl_2 \rightarrow hV C_6H_5CCl_3 + 3HCl$

Изменение энергии при реакциях S_E в ароматическом ряду

S (в ароматическом ряду

Исходные	Продукты	Название
вещества	реакции процесса	
$Ar - H + HNO_3 \rightarrow$	Ar – NO ₂ + H ₂ O	Нитрование
$Ar - H + H_2SO_4 \rightarrow$	Ar – SO ₃ H + H ₂ O	Сульфирование
Ar – H + Hal ₂ → ^{катализ}	Ar – Hal + Hal	Галогенирование
Ar – H + RCI → AlCl ₃	Ar – R + HCl	Алкилирование по Фриделю-Крафтсу
Ar–H + RCOCI → AlCl ₃	Ar – COR + HCI	Ацилирование по Фриделю-Крафтсу

S_E (в ароматическом ряду)

Исходные	Продукты	Название
вещества	реакции	процесса
$Ar - H + HNO_3 \rightarrow$	$Ar - NO_2 + H_2O$	Нитрование
$Ar - H + H_2SO_4 \rightarrow$	$Ar - SO_3H + H_2O$	Сульфирование
Ал Ц д Ца , катализ		
Ar – H + Hal ₂ → катализ	Ar – Hal + Hal	Галогенирование
$Ar - H + RCI \rightarrow^{AlCl_3}$	Ar – R + HCl	Алкилирование по Фриделю-Крафтсу

S_E (в ароматическом ряду)

$$Ar - H + ROCI \rightarrow^{AlCl_3}$$

Алкилирование по Фриделю-Крафтсу

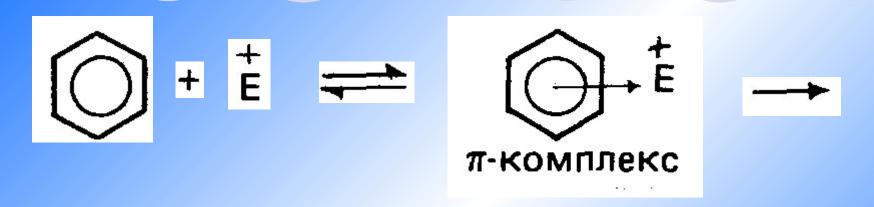
$$Ar - H + [Ar' - N^{\dagger} \equiv N] CI \rightarrow$$

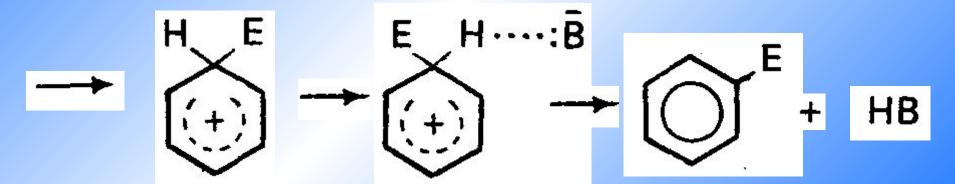
$$Ar - N = N - Ar' + HCI$$

Азосочетание

$$Ar - H + HNO_2 \rightarrow$$

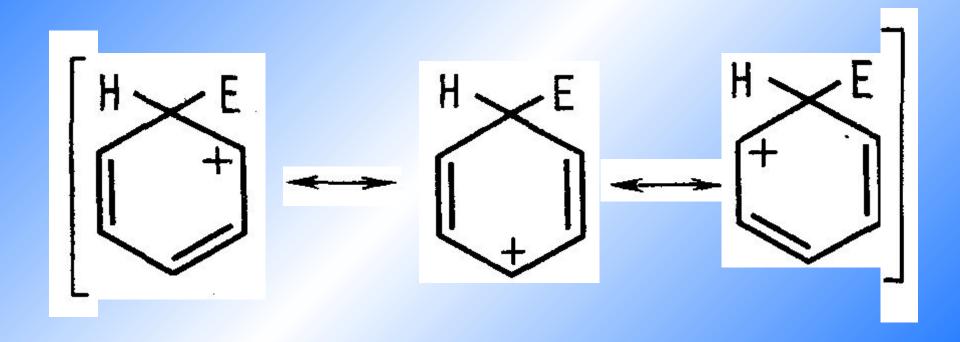
$$Ar - N = O + H_2O$$


Нитрозирование


$$Ar - H + CO_2 \rightarrow$$

Синтез Кольбе-Шмитта (только для фенолов)

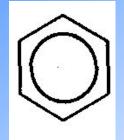
Механизм <u>S</u>_E (общий вид)



σ-комплекс

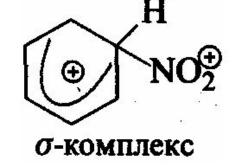
переходное состояние

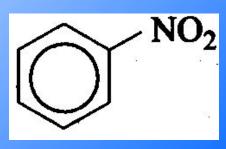
Предельные структуры о-комплекса



Механизм реакции нитрования

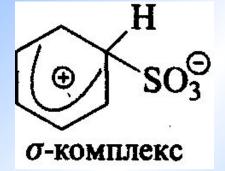
$$HNO_3 + H_2SO_4 \implies H - \overset{\oplus}{O} - NO_2 + HSO_4^{\odot}$$

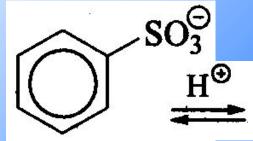

$$H = \overset{\oplus}{O} = NO_2 + H_2SO_4 \Longrightarrow H_3O^{\odot} + \overset{\oplus}{O}NO_2 + HSO_4^{\odot}$$
 $H = \overset{\oplus}{O} = NO_2 + H_2SO_4 \Longrightarrow H_3O^{\odot} + \overset{\oplus}{O}NO_2 + HSO_4^{\odot}$
 $H = \overset{\oplus}{O} = NO_2 + H_2SO_4 \Longrightarrow H_3O^{\odot} + \overset{\oplus}{O}NO_2 + HSO_4^{\odot}$
 $H = \overset{\oplus}{O} = NO_2 + H_2SO_4 \Longrightarrow H_3O^{\odot} + \overset{\oplus}{O}NO_2 + HSO_4^{\odot}$
 $H = \overset{\oplus}{O} = NO_2 + H_2SO_4 \Longrightarrow H_3O^{\odot} + \overset{\oplus}{O}NO_2 + HSO_4^{\odot}$
 $H = \overset{\oplus}{O} = NO_2 + H_2SO_4 \Longrightarrow H_3O^{\odot} + \overset{\oplus}{O}NO_2 + HSO_4^{\odot}$
 $H = \overset{\oplus}{O} = NO_2 + H_2SO_4 \Longrightarrow H_3O^{\odot} + \overset{\oplus}{O}NO_2 + HSO_4^{\odot}$
 $H = \overset{\oplus}{O} = NO_2 + H_2SO_4 \Longrightarrow H_3O^{\odot} + \overset{\oplus}{O} = NO_2 + HSO_4^{\odot}$
 $H = \overset{\oplus}{O} = NO_2 + H_2SO_4 \Longrightarrow H_3O^{\odot} + \overset{\oplus}{O} = NO_2 + HSO_4^{\odot}$
 $H = \overset{\oplus}{O} = NO_2 + H_2SO_4 \Longrightarrow H_3O^{\odot} + \overset{\oplus}{O} = NO_2 + HSO_4^{\odot}$
 $H = \overset{\oplus}{O} = NO_2 + H_2SO_4 \Longrightarrow H_3O^{\odot} + \overset{\oplus}{O} = NO_2 + HSO_4^{\odot}$

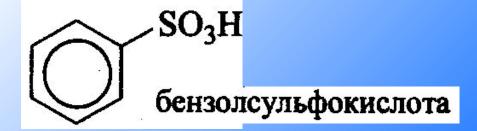


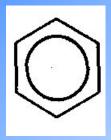
нитробензол

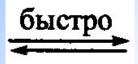
Механизм реакции сульфирования





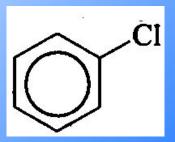




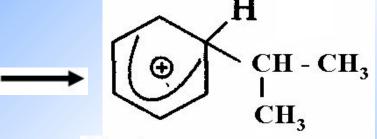


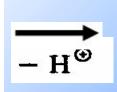
Механизм реакции галогенирования

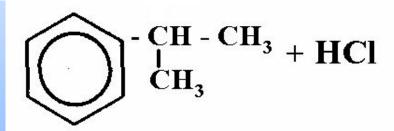
$$Cl_2 + FeCl_3 \rightarrow Cl^+ + FeCl_4^-$$



хлорбензол

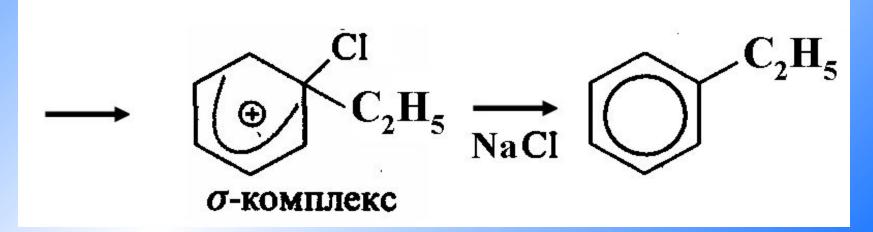

Алкилирование


(по Фриделю - Крафтсу)


в качестве алкилирующих средств могут быть использованы алкилгалогениды, спирты, алкены в присутствии соответствующих катализаторов (кислоты Льюиса)

 $\mathbf{CH_3} - \mathbf{CH_2} - \mathbf{CH_2} - \mathbf{CI} + \mathbf{AICl_3} - \mathbf{CH_2} - \mathbf{CH_3} - \mathbf{CH_2} - \mathbf{CH_2} - \mathbf{CH_3} - \mathbf{CH_1} - \mathbf{CH_3}$

$$+$$
 CH₃CH₂CH₂Cl $\xrightarrow{AlCl_3}$ \xrightarrow{CH} - CH₃ $\xrightarrow{\pi$ -комплекс CH_3


Изопропилбензол кумол

Алкилирование

(по Вюрцу - Фиттингу)

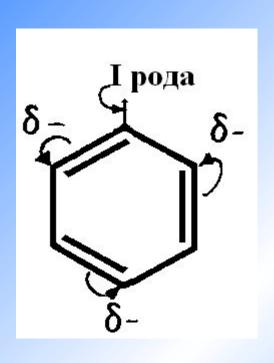
$$CI$$
 $+ C_2H_5CI$ \xrightarrow{Na} \xrightarrow{CI} C_2H_5 $\xrightarrow{\pi\text{-комплекс}}$ $\xrightarrow{\pi\text{-комплекс}}$

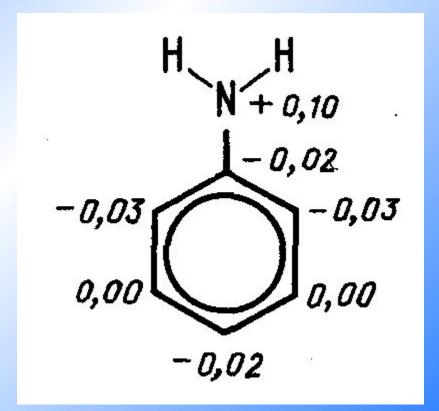
В качестве ацилирующих агентов используют галогенангидриды или ангидриды карбоновых кислот

О О О СН3—С—С СП + АІСІ3 —
$$\rightarrow$$
 [СН3—С $\stackrel{||}{C}$ [АІСІ $_4$] ацетилхлорид ацетилкатион

$$\bigcirc + [CH_3 - C^{\oplus}] [AlCl_4^{\Theta}] \xrightarrow{HCl} \bigcirc CH_3 + AlCl_3$$

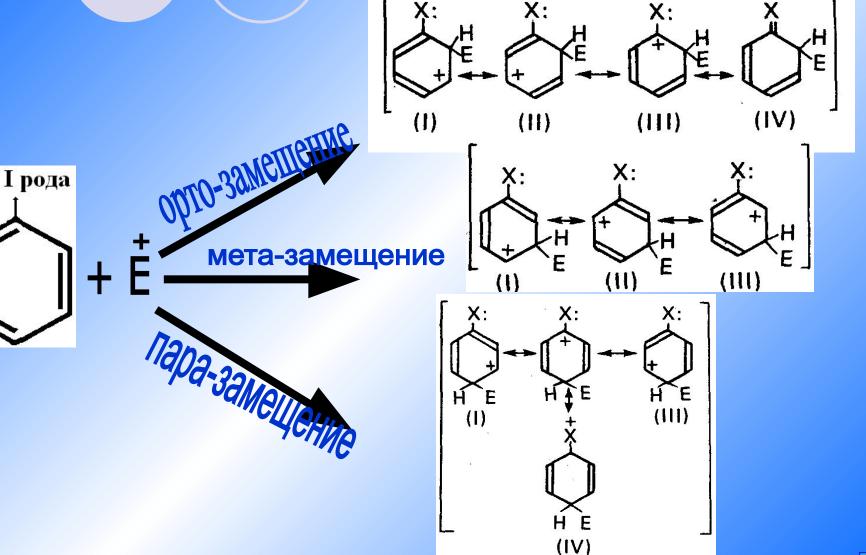
катализатора


Заместители I и II рода

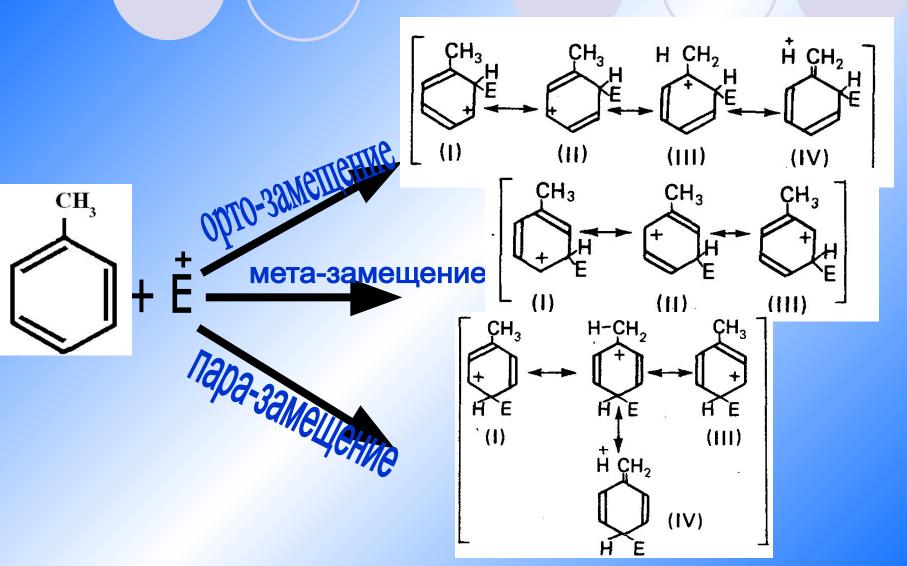

Заместители I рода (орто- и пара-ориентанты)			Заместители II рода (метаориентанты)
+ I, + M	- I < + M	- I > + M	- I, - M
- R - C ₆ H ₅	 NR2 NHR NH2 OH OR SH SR 	– F – Cl – Br – I	- CF ₃ - CH=0 - CR=0 - COOH - COOR - NO2 - NO - CN
Доноры электронной плотности		Акцепторы электронной плотности	

Орто- и пара-ориентанты

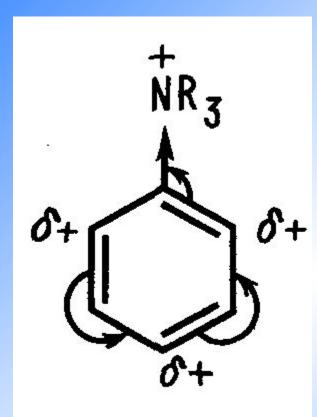
(статистические факторы)



Орто- и пара-ориентанты

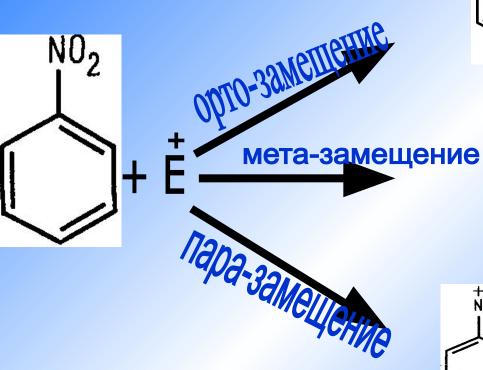

(динамические факторы)

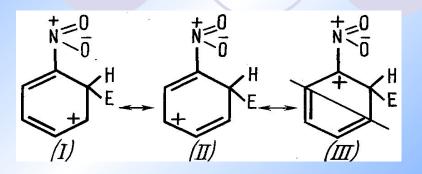
Орто- и пара-ориентанты

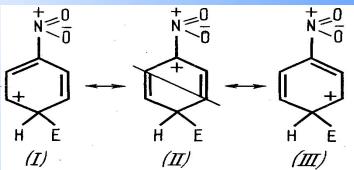

динамические факторы)

Мета-ориентанты

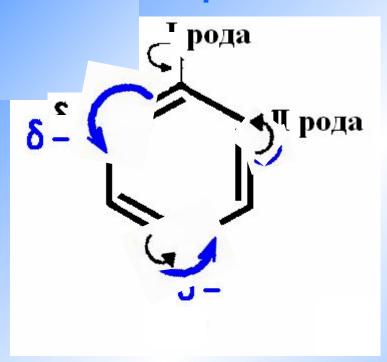
(статистические факторы)

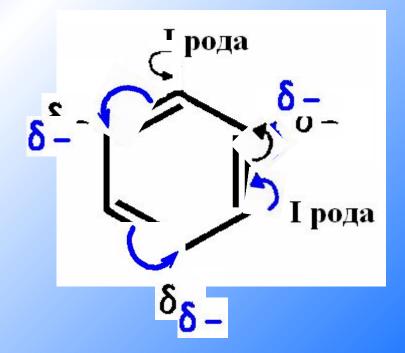



триалкилфениламмоний


Мета-ориентанты

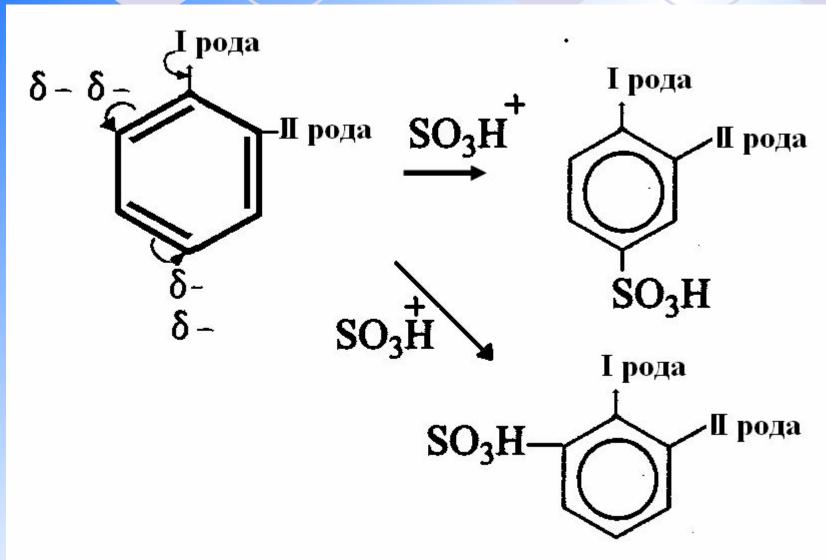
(динамические факторы)



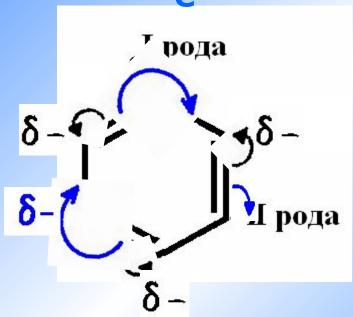


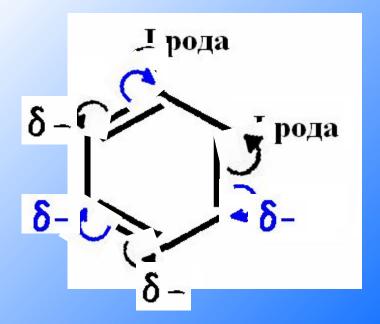
Согласованная ориентация

1. Заместители разного рода орто- и пара-

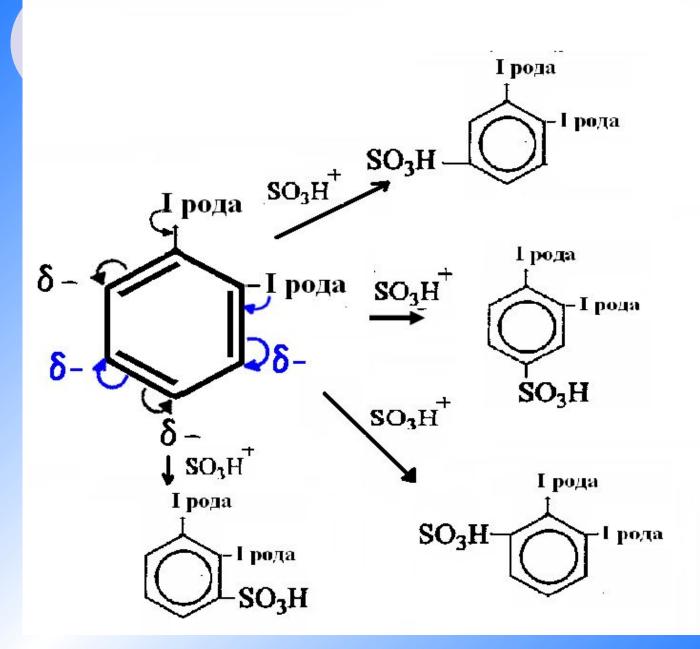


2. Заместители одного рода мета ориентированные

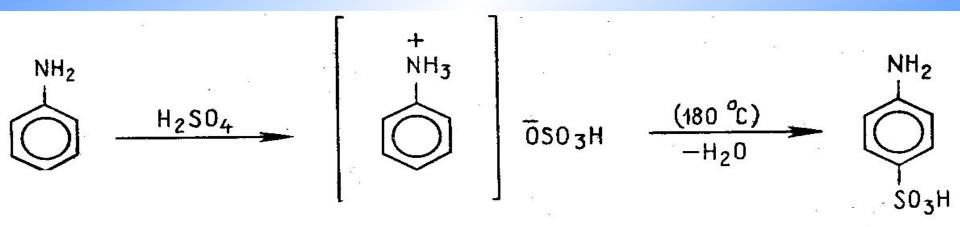

Согласованная ориентация



Несогласованная ориентация

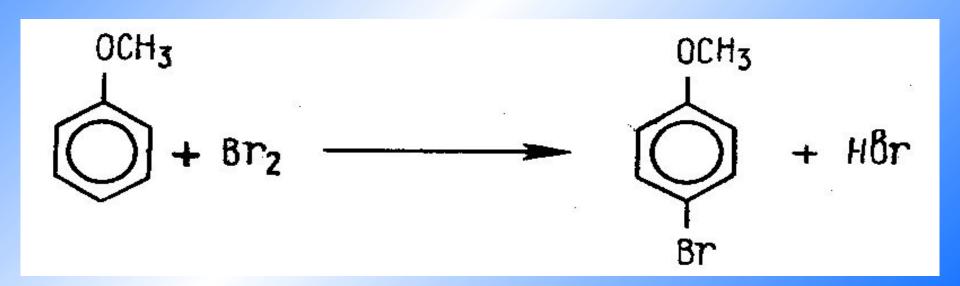

1. Заместители разного рода мета- ориентированны

2. Заместители одного рода орто- и параориентированные



Примеры реакций S_E для заместителей I рода

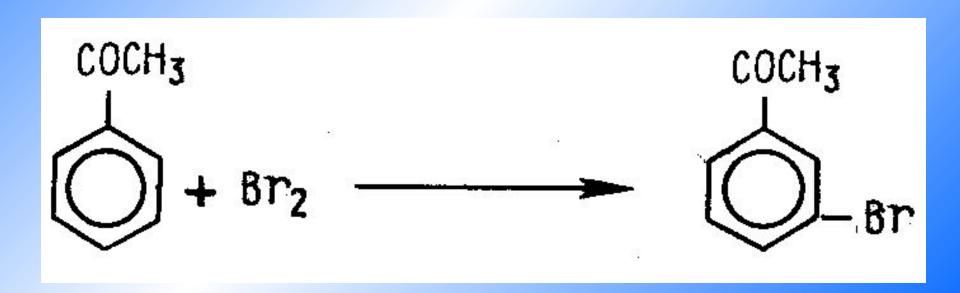
1. сульфирование анилина

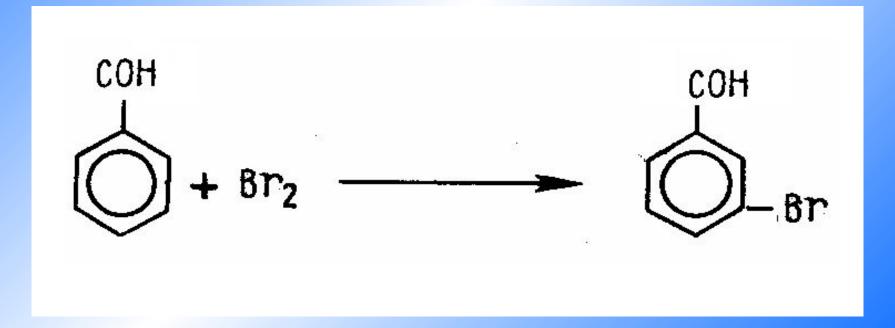

2. нитрование фенола

2
$$\bigcirc$$
 OH + 2HONO₂ \longrightarrow \bigcirc OH + \bigcirc + \bigcirc H₂O + \bigcirc NO₂

3. сульфирование толуола

4. бромирование диметиланилина


5. бромирование анизола


Примеры реакций S_E для заместителей II рода

1. нитрование бензойной кислоты

2. бромирование ацетофенона


$$\bigcirc CH_3 \longrightarrow \bigcirc CH_3$$

$$\bigcirc CH_3 \longrightarrow \bigcirc CH_3$$

$$\bigcirc CH_3 \longrightarrow \bigcirc CH_3$$

Литература

- 2. Органический синтез/ Н. В. Васильева и др. М.: Просвещение, 1986. 367 с., ил.
- 3. Перекалин В.В. и др. Органическая химия. М.: Просвещение, М., 1982. 560 с.
- 4. Степаненко Б.Н. Курс органической химии. В 2-х т. М.: Высшая школа, 1981.
- 5. Травень В.Ф. Органическая химия. В 2-х т. М.: ИКЦ Академкнига, 2005.
- 6. Шабаров Ю.С. Органическая химия. В 2-х т. М.: Химия, 1996.

