Resonator modes

CLASS EXERCISE 8

Long. And trans. Resonance frequencies

-Resonance frequency of the system:

- Beam full round-trip \leftrightarrow phase $2 \pi q$ (where q is an integer)
- In the FP case this leads to:

$$
v_{m}=\frac{c}{2 n L}
$$

Long. And trans. Resonance frequencies

- In FP the mirrors are flat \square plane waves
-For curved mirrors the beams have transversal profile
-How does it change the solutions?

Long. And trans. Resonance frequencies

-Reminder: beams and mirrors curvatures are matched

-This means that solving for $r=0$ is enough

Long. And trans. Resonance frequencies

-The phase condition for half cycle is thus:

$$
\Delta \phi=\theta_{q l m}\left(z_{2}\right)-\theta_{q l m}\left(z_{1}\right)=q \pi
$$

-The z-dependent phase of the beam is:

$$
\theta_{q l m}(z)=k_{q l m} z-(l+m+1) \tan ^{-1}\left(\frac{z}{z_{0}}\right)
$$

Long. And trans. Resonance frequencies

-Thus we get:

$$
\begin{array}{r}
\Delta \phi=k_{q l m}\left(z_{2}-z_{1}\right)-(l+m+1)\left(\tan ^{-1}\left(\frac{z_{2}}{z_{0}}\right)-\tan ^{-1}\left(\frac{z_{1}}{z_{0}}\right)\right)=q \pi \\
\Rightarrow k_{q l m} L-(l+m+1) \Delta \eta=q \pi
\end{array}
$$

Long. And trans. Resonance frequencies

-From this equation we learn:

$$
k_{q l m} L-(l+m+1) \Delta \eta=q \pi
$$

-The phase depends on q
-The phase depends on transverse characteristics (I, m)

Long. And trans. Resonance frequencies

-We divide the solution into 2 cases: $\quad k_{q l m} L-(l+m+1) \Delta \eta=q \pi$
-Constant I,m
-Constant q

Constant I, m - Longitudinal modes

-We write the equation for q and $q+1: \quad k_{q l m} L-(l+m+1) \Delta \eta=q \pi$

$$
\left\{\begin{array}{cl}
k_{q} L-(l+m+1) \Delta \eta=q \pi & \Rightarrow\left(k_{q+1}-k_{q}\right) L=\pi \\
k_{q+1} L-(l+m+1) \Delta \eta=(q+1) \pi & \Rightarrow \frac{2 \pi n L}{c}\left(v_{q+1}-v_{q}\right)=\pi \\
& \Rightarrow v_{q+1}-v_{q}=\frac{c}{2 n L}
\end{array}\right.
$$

Constant I, m - Longitudinal modes

-We got:

$$
v_{q+1}-v_{q}=\frac{c}{2 n L} \equiv F S R_{F P}
$$

-Which is exactly the FSR of a FP resonator
-These modes depend only on the length of the resonator

- \square they are called, thus, Longitudinal modes

Constant q - Transverse modes

-We write the equation for 2 gaussian mddade $-(l+m+1) \Delta \eta=q \pi$

$$
\left\{\begin{aligned}
k_{q l m} L-(l+m+1) \Delta \eta=q \pi & \\
k_{q l^{\prime} m^{\prime}} L-\left(l^{\prime}+m^{\prime}+1\right) \Delta \eta=q \pi & \\
& \Rightarrow\left(k_{q l^{\prime} m^{\prime}}-k_{q l m}\right) L=\Delta(l+m) \Delta \eta \\
& \Rightarrow \frac{2 \pi n L}{c}\left(v_{q l^{\prime} m^{\prime}}-v_{q l m}\right)=\Delta(l+m) \Delta \eta \\
& \Rightarrow v_{q l^{\prime} m^{\prime}}-v_{q l m}=\frac{c}{2 n L} \frac{\Delta \eta}{\pi} \Delta(l+m)
\end{aligned}\right.
$$

Constant q - Transverse modes

-We got:

$$
v_{q l^{\prime} m^{\prime}}-v_{q l m}=\frac{c}{2 n L} \frac{\Delta \eta}{\pi} \Delta(l+m)=F S R_{F P} \frac{\Delta \eta}{\pi} \Delta(l+m)
$$

-The result is invariant to switching / and m
-Depends on difference in transverse profile (subtraction of I+m)

- \square they are called, thus, Transverse modes

Examples - symmetric resonator

-Symmetric resonator:

$$
z_{1}=-z_{2}
$$

-Thus we have:

$$
\Delta \eta=\tan ^{-1}\left(\frac{z_{2}}{z_{0}}\right)-\tan ^{-1}\left(\frac{z_{1}}{z_{0}}\right)=2 \tan ^{-1}\left(\frac{z_{2}}{z_{0}}\right)
$$

Examples - confocal symmetric resonator

-Confocal symmetric resonator:
-If the resonator is also confocal:

$$
\begin{gathered}
z_{1}=-z_{2} \Rightarrow z_{2}=L / 2 \\
R=L
\end{gathered}
$$

Examples - confocal symmetric resonator

- Solving L as a function of z_{0} :

$$
\begin{gathered}
z_{1}=-z_{2} \Rightarrow z_{2}=L / 2 \\
R=L
\end{gathered}
$$

$$
\begin{aligned}
R= & R\left(z_{2}\right)=z_{2}+\frac{z_{0}^{2}}{z_{2}}=L \\
& \Rightarrow \frac{L}{2}+2 \frac{z_{0}^{2}}{L}=L \\
& \Rightarrow z_{0}^{2}=L^{2} / 4 \\
& \Rightarrow z_{0}=L / 2
\end{aligned}
$$

Examples - confocal symmetric resonator

- Since the resonator is symmetric:

$$
\begin{gathered}
\Delta \eta=2 \tan ^{-1}\left(\frac{z_{2}}{z_{0}}\right) \\
=2 \tan ^{-1}\left(\frac{L / 2}{L / 2}\right)=\frac{\pi}{2} \\
\Rightarrow v_{q l^{\prime} m^{\prime}}-v_{q l m}=\frac{c}{2 n L} \frac{1}{2} \Delta(l+m)=\operatorname{FSR}_{F P} \frac{1}{2} \Delta(l+m)
\end{gathered}
$$

Examples - confocal symmetric resonator

$$
v_{q l^{\prime} m^{\prime}}-v_{q l^{l m}}=\frac{c}{2 n L} \frac{1}{2} \Delta(l+m)=F S R_{F P} \frac{1}{2} \Delta(l+m)
$$

-Resonance frequencies can:
-Coincide with original modes

- Be between two modes
-The number of modes in a section is doubled

Examples - nearly planar resonator

-We assume:

$$
R \boxtimes L
$$

-Thus we have:

$$
R=R\left(z_{2}\right)=z_{2}+\frac{z_{0}^{2}}{z_{2}} \boxtimes L
$$

-This leads to either:

$$
\begin{cases}z_{2} \boxtimes & L \\ z_{2} \boxtimes & z_{0}\end{cases}
$$

Examples - nearly planar resonator

-The first option is impossible since by definition

$$
z_{2}<L
$$

-Thus given

$$
\begin{aligned}
& \text { given we have: } \\
& \begin{aligned}
z_{2} \boxtimes z_{0}
\end{aligned} \\
& \begin{aligned}
\Delta \eta=\tan ^{-1}\left(\frac{z_{2}}{z_{0}}\right)-\tan ^{-1}\left(\frac{z_{1}}{z_{0}}\right) & \approx \frac{z_{2}}{z_{0}}-\frac{z_{1}}{z_{0}}=\frac{z_{2}-z_{1}}{z_{0}} \\
& \Rightarrow \Delta \eta=\frac{L}{z_{0}}
\end{aligned}
\end{aligned}
$$

Examples - nearly planar resonator

-So the resonance frequencies are:

$$
v_{q l^{\prime} m^{\prime}}-v_{q l m}=\frac{c}{2 n \pi z_{0}} \Delta(l+m)
$$

-Since $z_{0} \gg L$ we have many frequencies between long. freqs.
-This is undesirable since quality and coherence are determined
by the number of operating modes

A circular resonator

-Given by 3 mirrors on the vertices of an equilateral triangle

A circular resonator

-The upper (entrance) and left (exit) mirrors are dielectric mirrors with: $r=-r^{\prime}$
-The right mirror is fully reflective with $R=1$

- Notice that reflections add π phase and the perimeter of the triangle is L

A circular resonator

-What are the transmission intensity and the resonance frequencies?

A circular resonator

-We calculate the transmission by adding transmitted waves as we did for FP:

$$
\begin{aligned}
& A_{1}=A_{i} t e^{i k L / 3} t^{\prime} \\
& A_{2}=A_{1}\left(-r^{\prime}\right)^{2}(-1) e^{i k L} \\
& A_{3}=A_{2}\left(-r^{\prime}\right)^{2}(-1) e^{i k L}
\end{aligned}
$$

-And so on

A circular resonator

-Summing over all the partial waves:

$$
\begin{aligned}
& A_{t}=\sum_{j} A_{j}=A_{i} T e^{i k L / 3}\left[1-r^{\prime 2} e^{i k L}+r^{\prime 4} e^{2 i k L}-\ldots\right] \\
& \frac{A_{t}}{A_{i}}= \\
&\left|\frac{1-R}{1+R e^{i k L} e^{i k L / 3}}\right| \\
&\left|A_{i}\right|^{2}= \frac{(1-R)^{2}}{1+R^{2}+2 R \cos (k L)}=\frac{(1-R)^{2}}{(1-R)^{2}+4 R \cos ^{2}(k L / 2)}
\end{aligned}
$$

A circular resonator

-The resonance frequencies depend on the cosine of the phase, not on the sine as in FP

$$
I_{t}=I_{i} \frac{(1-R)^{2}}{(1-R)^{2}+4 R \cos ^{2}(k L / 2)}
$$

A circular resonator

-Thus the resonance frequencies are shifted, but the FSR is not changed:

$$
\begin{aligned}
& \cos ^{2}(k L / 2)=0 \\
& \Rightarrow \frac{k_{m} L}{2}=(2 m+1) \frac{\pi}{2} \\
& \Rightarrow \frac{2 \pi n L}{2 c} v_{m}=(2 m+1) \frac{\pi}{2} \\
& \Rightarrow v_{m}=\frac{c}{2 n L}(2 m+1)
\end{aligned} \Rightarrow \Delta v=\frac{c}{n L}
$$

A circular resonator

-We add a mirror between the lower mirrors. Find the waist of the beam in the resonator

A circular resonator

-We use the analogy to curved mirrors resonators:

A circular resonator

-We can calculate the size as in the curved mirrors resonator with $R=2 f$:

$$
\begin{aligned}
& z_{2}=L / 2 \quad R=2 f \\
\Rightarrow & 2 f=z_{2}+\frac{z_{0}^{2}}{z_{2}}=\frac{L}{2}+2 \frac{z_{0}^{2}}{L} \\
\Rightarrow & z_{0}^{2}=\frac{L}{2}\left[2 f-\frac{L}{2}\right]
\end{aligned}
$$

$$
\omega_{0}{ }^{2}=\frac{\lambda z_{0} c}{\pi n} \Rightarrow \omega_{0}{ }^{2}=\frac{\lambda}{\pi n} \sqrt{\frac{L}{2}\left[2 f-\frac{L}{2}\right]}
$$

A circular resonator

-Find $V_{\text {qlm }}$ for the first 6 modes for $f=L$
-We begin with finding the nonlinear phase from the relation of L and z_{0}

$$
\begin{gathered}
f=L \Rightarrow z_{0}=\frac{L}{2} \sqrt{3} \\
\Delta \eta=2 \tan ^{-1}\left(\frac{L}{2 z_{0}}\right)=2 \tan ^{-1}\left(\frac{L}{2 \frac{L}{2} \sqrt{3}}\right) \quad \Rightarrow \Delta \eta=\frac{\pi}{3}
\end{gathered}
$$

A circular resonator

-We notice that the output should gain a phase of some multiple of 2π
over a distance L (not $2 L$!)
-We should also add a π phase on each round due to reflection

A circular resonator

$$
\begin{aligned}
& \frac{2 \pi n L}{c} v_{q l m}-(l+m+1) \Delta \eta-\pi=2 q \pi \\
& \Rightarrow \frac{2 \pi n L}{c} v_{q l m}-(l+m+1) \frac{\pi}{3}=(2 q+1) \pi \\
& \Rightarrow v_{q l m}=\frac{c}{2 n L}\left[(2 q+1)+\frac{l+m+1}{3}\right]
\end{aligned}
$$

A circular resonator

-The first 6 modes:

$$
\begin{gathered}
v_{q 00}=\frac{c}{2 n L}\left[1+\frac{1}{3}\right]+q \cdot F S R \\
v_{q 01}=v_{q 10}=\frac{c}{2 n L}\left[1+\frac{2}{3}\right]+q \cdot F S R \\
v_{q 11}=v_{q 02}=v_{q 20}=\frac{c}{2 n L}\left[1+\frac{3}{3}\right]+q \cdot F S R
\end{gathered}
$$

A circular resonator

-We see that the new resonances are shifted by $\mathrm{c} / 2 \mathrm{~nL}$ from FP (because of the π

$$
v_{q 00}=\frac{c}{2 n L}\left[1+\frac{1}{3}\right]+q \cdot F S R
$$ reflection phase)

$$
\begin{aligned}
v_{q 01} & =v_{q 10}=\frac{c}{2 n L}\left[1+\frac{2}{3}\right]+q \cdot F S R \\
v_{q 11}=v_{q 02} & =v_{q 20}=\frac{c}{2 n L}\left[1+\frac{3}{3}\right]+q \cdot F S R
\end{aligned}
$$

-There are 5 new frequencies between each two: $\quad \frac{l+m}{3}=2$

