Химия элементов.

Комплексные соединения. Основные понятия координационной теории. Номенклатура. Типы комплексных соединений. Поведение в растворе

Простые и комплексные соединения

$$HgI_2 + 2KI = K_2[HgI_4]$$

$$SO_3(T) + K_2O(T) =$$

$$= K_2SO_4(T)$$

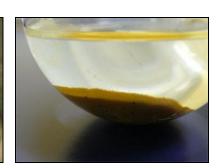
•
$$HgI_{2}(T) + 2K^{+}(p) + 2I^{-}(p) =$$

= $2K^{+}(p) + [HgI_{4}]^{2-}(p)$

•
$$K_2O(T) + SO_3(T) =$$

= $2K^+(p) + SO_4^{2-}(p)$

 SO_3


K₂SO₄

 HgI_2

KI

 $K_2[HgI_4]$

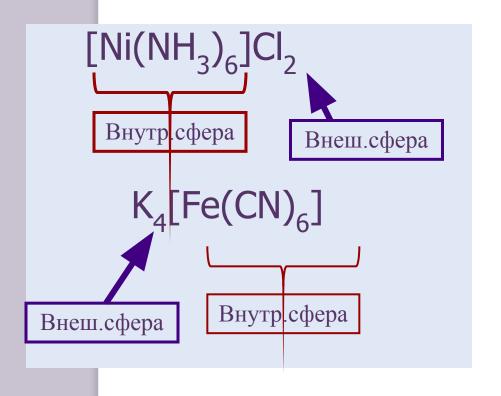
Комплексные (координационные) соединения

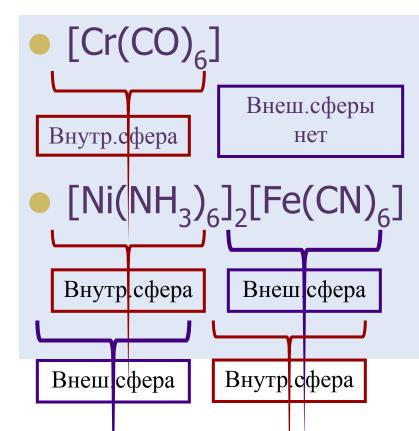
Комплексами

называют сложные частицы, образованные из реально существующих более простых, способные к самостоятельному существованию:

в узлах кристаллической решетки или в растворе

Координационная теория (1893 г.)


Внутренняя и внешняя сфера комплексного соединения [ML_x]Y_z Комплексообразователь М^{±v} Лиганды L^{±v} Координационное число КЧ Дентатность лигандов Многоядерные комплексы (мостиковые, смешанные, кластеры)



Альфред Вернер (1866-1919), швейцарский химик

Внутренняя сфера [комплекс] Внешняя сфера (противоион)

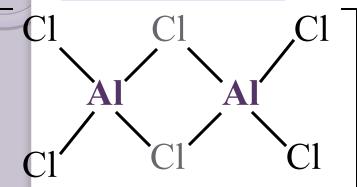
Примеры

Комплексообразователь, лиганды, КЧ и дентатность. Примеры

$$\begin{split} & [\mathrm{NH_4}]\mathrm{Cl} - \mathrm{KY} \ 4, \ \mathrm{дент.1} \\ & [\mathrm{Al}(\mathrm{H_2O})_6]\mathrm{Cl_3} - \mathrm{KY} \ 6, \ \mathrm{дент.1} \\ & \mathrm{K}[\mathrm{I}(\mathrm{I})_2] - \mathrm{KY} \ 2, \ \mathrm{дент.1} \\ & \mathrm{H_2}[\mathrm{SnCl_6}] - \mathrm{KY} \ 6, \ \mathrm{дент.1} \\ & \mathrm{K_2}[\mathrm{Be}(\mathrm{OH})_4] - \mathrm{KY} \ 4, \ \mathrm{дент.1} \\ & \mathrm{K}[\mathrm{BiI_4}] - \mathrm{KY} \ 4, \ \mathrm{дент.1} \\ & [\mathrm{Al}(\mathrm{H_2O})_3(\mathrm{OH})_3] - \mathrm{KY} \ 6, \ \mathrm{дент.1} \\ & [\mathrm{NH_4})_2[\mathrm{Be}(\mathrm{CO}_3)_2] - \mathrm{KY} \ 4, \ \mathrm{дент.2} \end{split}$$

$$[I - I - I]^-$$

Полидентатные лиганды


этилендиамин оксалат-ион карбонат-ион

$${
m Hooc-ch_2}$$
 ${
m H_2C-cooh}$ ${
m Hooc-ch_2}$ ${
m N-ch_2-ch_2-N}$ ${
m H_2C-cooh}$

этилендиаминтетрауксусная кислота

Многоядерные комплексы

Мостиковый

КЧ 4, дент. 1 и 2

Кластер

$$Cl_4Re \equiv ReCl_4$$

Смешанный тип

КЧ 6, дент. 1 и 2

Номенклатура комплексных соединений. 1. Названия лигандов

	Lo						
4)	: окончание «о»						
	F ⁻	фторо-					
	Cl ⁻	хлоро-					
	O ²⁻	оксо-					
	S ²⁻	тио-					
	OH ⁻	гидроксо-					
	SO ₄ ²⁻	сульфато-					
	CN ⁻	циано-					
	NO_2^-	нитро-					
	H ⁻	гидридо-					
	(H ⁺)	(гидро-)					

L ⁰ : название					
H ₂ O	аква				
NH_3	аммин				
CO	карбонил				
NO	нитрозил				
ру	пиридин C_5H_5N				
en	этилендиамин				
	NH ₂ CH ₂ CH ₂ NH ₂				

2. Формулы и названия компл. соединений. $[M(L^+)(L^0)(L^-)]^{\pm,0}$

Число лигандов – греч. числит.

1 - (МОНО)

2 – ди

3 – три

4 – тетра

5 – пента

6 – гекса

7 – гепта ...

Название комплекса:

число лигандов каждого типа \rightarrow название лигандов \rightarrow название комплексообр. в нужной форме

- Число сложных лигандов:
 бис-, трис-, тетракис-,
 пентакис- ...
- [M(en)₄] тетракис
 (этилендиамин)...
- [M(SO₄²⁻)₂] бис(сульфато-)...

3. Названия комплексных соединений

А) Комплексы без внешней сферы $[ML_n]$ $n \to L \to M$ (в одно слово)

Примеры:

 $[Ni(CO)_4]$ – тетракарбонилникель; $[Co_2(CO)_8]$ – октакарбонилдикобальт;

 $[Al_{2}Cl_{6}]$ – гексахлородиалюминий;

 $[Co^{+III}(NH_3)_3Cl_3]$ — трихлоротриамминкобальт(III)

 $[Co^{+II}(H_2O)_4(NO_2)_2]$ — динитротетрааквакобальт(II)

Названия комплексных соединений

• Б) Комплексный катион

$$[ML_n]^+X^-$$

«анион катиона»: $n \to L \to M(cт.oк.)$

Примеры:

$$[Ag^{I}(NH_3)_2]OH -$$

гидроксид диамминсеребра(I);

$$[\mathbf{Co^{III}}(\mathbf{NH_3})_6](\mathbf{OH})_2\mathbf{Cl} -$$

хлорид-дигидроксид гексаамминкобальта(III);

$$[\mathbf{Cr_2^{III}}(\mathbf{NH_3})_9(\mathbf{OH})_2]\mathbf{Cl_4} -$$

хлорид дигидроксононаамминдихрома(III)

Названия комплексных соединений

В) Комплексный анион $X^{+}[ML_{n}]^{-}$ «анион катиона»: анион $n \to L \to M(ct.ok.)$ -«ат»

Примеры:

 $[Fe(CN)_6]^{3-}$ — гексацианоферрат(III)-ион $[Ag(CN)_2]^-$ — дицианоаргентат(I)-ион $K_2[HgI_4]$ — тетраиодомеркурат(II) калия $K_2[PtCl_6]$ — гексахлороплатинат(IV) калия

Ag – аргент-

Au - ayp-

Cu - купр-

Fe – фepp-

Hg – меркур-

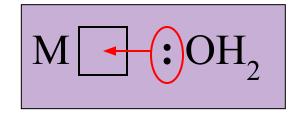
Мп – манган-

Ni – никкол-

Pb – плюмб-

Sb – стиб-

Sn – станн-


Упражнения:

$$Na_3[Ag^I(SO_3S)_2] -$$
 бис(тиосульфато)аргентат(I) натрия $[Pt^{II}(py)_4]_2[Fe^{II}(CN)_6] -$ гексацианоферрат(II) тетрапиридинплатины(II) $[K(H_2O)_6][Al(H_2O)_6](SO_4)_2 -$ сульфат гексаакваалюминия-гексааквакалия $[(CO)_5Mn-Mn(CO)_5] -$ бис(пентакарбонилмарганец)

[(H_2 O)₄Al(OH)₂Al(H_2 O)₄](SO₄)₂ – сульфат ди(μ -гидроксо)бис(тетраакваалюминия)

Типы комплексных соединений.

1. Аквакомплексы

В водных растворах:

- [Be(H₂O)₄]²⁺
- $[Al(H_2O)_6]^{3+}$
- $[Cr(H_2O)_6]^{3+}$...

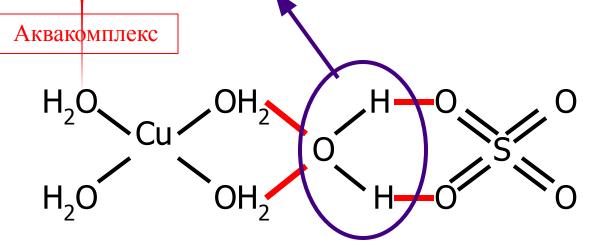
Кристаллогидраты:

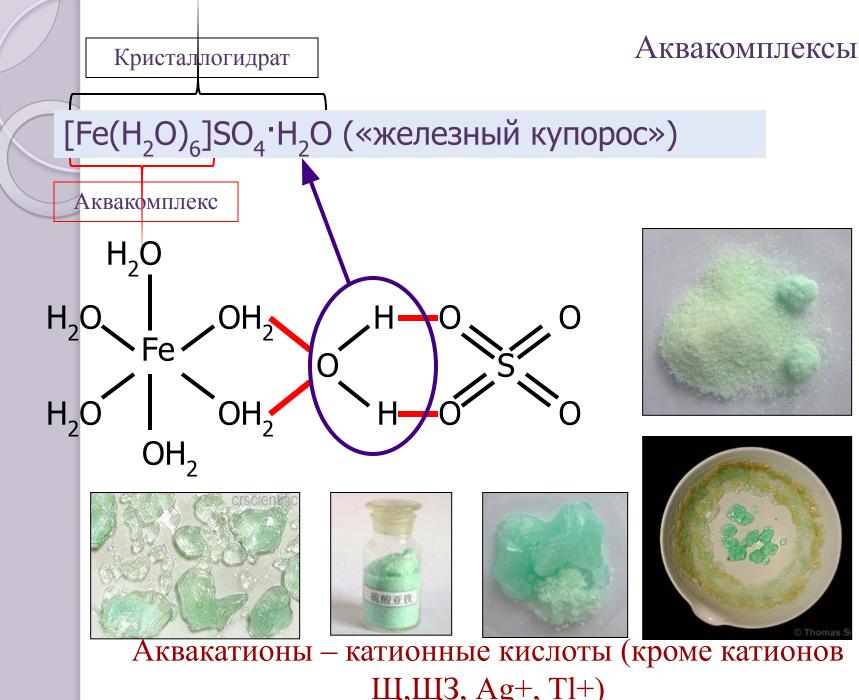
- [Be(H₂O)₄]SO₄
- [Al(H₂O)₆]Cl₃
- $[K(H_2O)_6][Cr(H_2O)_6](SO_4)_2$
- [Cu(H₂O)₄]SO₄·H₂O
- [Ni(H₂O)₆]SO₄ ·H₂O

Термич. разложение:

CuSO₄·5H₂O

 $CuSO_4 \cdot 4H_2O + H_2O(\Gamma)$

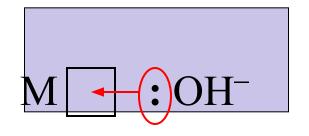

 $CuSO_4 + 4H_2O(\Gamma)$


Аквакомплексы

Кристаллогидрат

 $[Cu(H_2O)_4]SO_4 \cdot H_2O$ («медный купорос»)

Щ,Щ3, Ад+, Т1+)

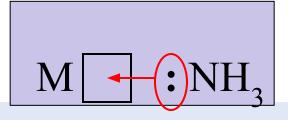

Аквакомплексы

Аквакатионы – катионные кислоты (кроме катионов Щ,Щ3, Ag+, Tl+)

$$[Zn(H_2O)_4]^{2+} + H_2O \rightleftharpoons [Zn(H_2O)_3(OH)]^+ + H_3O^+$$

Кк для производных железа(II) и железа(III) составляют 1,8 · 10 · 7 и 6,8 · 10 · 3.

2. Гидроксокомплексы


Получение:

- $\mathbf{Z}_{n}(OH)_{2} + 2OH^{-}(изб.) = [\mathbf{Z}_{n}(OH)_{4}]^{2-}; pH >> 7$ **Разрушение:**
- $[Zn(OH)_4]^{2-} (+H_3O^+)$
- + CH₃COOH; CO₂; NH₄⁺ (сл.к-ты, рН ≈ 7)
- $Zn(OH)_2(T)$
- $\Box + H_3O^+$ (сильн.к-ты, pH < 7)
- $[Zn(H_2O)_4]^{2+}$
- Образование гидроксокомплексов характерно для амфотерных элементов.

$$Na[Al(OH)_4] = NaAlO_2 + 2 H_2O$$
 (при нагревании)

Протолиз – щелочная среда pH >> 7

3. Аммины (аммиакаты)

Получение:

- AgCl(τ) + $2NH_3 \cdot H_2O(изб.) = [Ag(NH_3)_2]^+ + Cl^- + 2H_2O$
- $NiSO_4 + 6 NH_3 \cdot H_2O = [Ni(NH_3)_6]SO_4 + 6 H_2O$
- $CoCl_2 + 6 NH_3(r) = [Co(NH_3)_6]Cl_2$
- $AICI_3(s) + 6 NH_3(x) = [AI(NH_3)_6]CI_3(s)$
- $Cu(H_2O)_4]^{2+} + NH_3 + H_2O = [Cu(H_2O)_3(NH_3)]^{2+} + 2 H_2O;$
- $[Cu(H_2O)_3(NH_3)]^{2+} + NH_3 \cdot H_2O = [Cu(H_2O)_2(NH_3)_2]^{2+} + 2H_2O$

 $[Cu(NH_3)_4](OH)_2$

 $[Ni(NH_3)_6]Cl_2$


3. Аммины (аммиакаты)

Разрушение:

- $[Ag(NH_3)_2]^+ + H_3O^+ \square NH_4^+ + ...$
- $[Ag(NH_3)_2]^+ + I^- \square AgI(T) + ...$
- $[Ag(NH_3)_2]^+ + t^\circ \square NH_3(\Gamma) + ...$
- $Cu(NH_3)_4](OH)_2 + Na_2S + 4H_2O = CuS + 2NaOH + 4NH_3H_2O$

$$[Cu(NH_3)_4]SO_4 + 6 Br_2 = CuSO_4 + 12 HBr + 2 N_2(\Gamma)$$

 $[\text{Co(NH}_3)_6]^{3+}$ ($b_6 = 1,6 \cdot 10^{35}$), $[\text{Cu(NH}_3)_4]^{2+}$ ($b_4 = 7,9 \cdot 10^{12}$), $[\text{Zn(NH}_3)_4]^{2+}$ ($b_4 = 4,2 \cdot 10^9$) и некоторые другие.

4. Ацидокомплексы

M : X-

В ацидокомплексах лигандами служат

анионы кислот, органических и неорганических:

F-, Cl⁻, Br⁻, I⁻, CN⁻, NO₂⁻, SO₄²⁻, C₂O₄²⁻, CH₃COO⁻ и др.

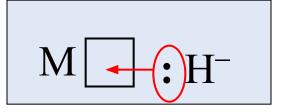
Получение:

- $Hgl_{2}(T) + 2I^{-}(изб.) = [Hgl_{4}]^{2-}$
- $[Fe(H_2O)_6]^{3+} + 6NCS^- = [Fe(NCS)_6]^{3-} + 6H_2O$

Разрушение:

- $[HgI_4]^{2-} + S^{2-} = HgS(T) + 4I^{-}$
- $[Fe(NCS)_6]^{3^-} + 4F^- = [FeF_4]^- + 6NCS^-$

Получение и разрушение тиоцианатного к-са Fe(III)



 $K_4[Fe(CN)_6]$

 $K_3[Fe(CN)_6]$

5. Гидридокомплексы

Комплексообразователи в гидридных комплексах чаще всего элементы IIIA-группы — бор, алюминий, галлий, индий, таллий.

B ряду $[BH_4]^- > [AlH_4]^- > [GaH_4]^-$ устойчивость гидридных

комплексов падает.

Получение:

- 4 NaH + B(OCH₃)₃ = Na[BH₄] + 3CH₃ONa (при 250 °C)
- 4 LiH + AlCl₃ = Li[AlH₄] + 3LiCl
- $3 \operatorname{Li}[BH_{4}] + \operatorname{AlCl}_{3} = \operatorname{Al}[BH_{4}]_{3} + 3\operatorname{LiCl}_{4}$

Разрушение:

- $Na[AIH_4] + 4 H_2O = NaOH + AI(OH)_3 + 4 H_2\uparrow (OBP)$
- $2 \text{ Na[BH}_4] + \text{H}_2\text{SO}_4 = \text{Na}_2\text{SO}_4 + \text{B}_2\text{H}_6^{\uparrow} + 2 \text{H}_2^{\uparrow} \text{ (OBP)}$

Li[AlH₄]

Na[BH₄]

6. А<u>нионгалогенаты</u> М [ЭГ $'_{m}$ Г $''_{n}$] (Э, Г' и Г'' – галогены)

- •Степень окисления комплексообразователя Э в анионгалогенатах может быть
- •положительной, например, в $[I^{III}Cl_4]^-$,
- •**нулевой** как в $[(I_2)^0(I_3)_2]^{2-}$ и
- •отрицательной в $[I^{-I}(I_2)_2]^-$.

Получение:

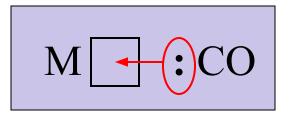
$$\bullet$$
KI + I₂ = K[I(I)₂]; CsCl + IBr = Cs[I(Br)(Cl)]

Разрушение:

- $K[I(I)_2] + t^\circ = KI + I_2(\Gamma)$
- $Cs[I(Br)(CI)] + t^{\circ} = CsCI + IBr(\Gamma)$

7. <u>Катионгалогены</u> [ЭГ′_mГ″_n]Z (Э, Г′ и Г″ – галогены)

Все катионгалогены – сильнейшие окислители. Они бурно реагируют с водой и органическими растворителями.


• Получение:

- $ICl_3 + SbCl_5 = [ICl_2][SbCl_6];$
 - $BrF_3 + AsF_5 = [BrF_2][AsF_6]$

• Свойства:

• Ag[BrF₄](s) + [BrF₂][SbF₆](s) = Ag[SbF₆](s) + 2BrF₃(ж) в среде BrF₃(ж)

8. Карбонилы

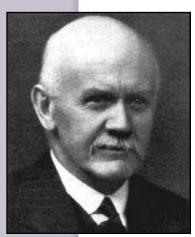
Получение:

Ni(т) + 4CO(г) = [Ni(CO)₄](ж) (ниже 50 °C) тетракарбонилникель(о)

Разрушение:

- $| Ni(CO)_4](ж) + t^\circ = Ni(т) + 4 CO(г) (выше 200 °C)$
- $[Ni(CO)_4] + H_2SO_4(pas6.) = NiSO_4 + 4 CO↑ + H_2↑$

Высокочистое железо (карбонильный метод очистки)


Состав карбонильных комплексов: $[Cr(CO)_6]$, $[Mn_2(CO)_{10}]$, $[Fe(CO)_5]$, $[Co_2(CO)_8]$ и др.

8. Карбонилы

Карбонильные комплексы в обычных условиях — кристаллические вещества или жидкости, легколетучие и низкиие температуры пл. и кип.:

соединение	температура плавления,°С	соединение	температура плавления,°С
$[Cr(CO)_6]$	возгоняется	$[Re_2(CO)_{10}]$	177
$[Mo(CO)_6]$	возгоняется	[Fe(CO) ₅]	- 20
$[W(CO)_6]$	возгоняется	$[\mathrm{Co_2(CO)_8}]$	51
$[\mathrm{Mn_2(CO)}_{10}]$	154 (разл.)	$[Ni(CO)_4]$	- 19

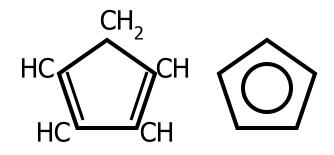
Правило Сиджвика для определения состава комплексов

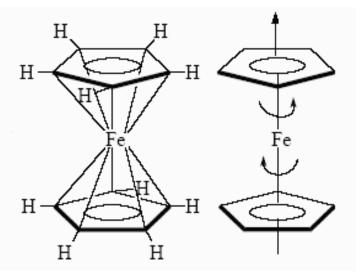
H.-В. Сиджвик (1873 –1952)

- Устойчивым является комплекс, в котором реализована 18-эл-ная оболочка из s-, p- и d-электронов М и х эл. пар лигандов (L)
- 26 Fe⁰ [Ar]3d⁶4s² || 36 Kr
- $18 8 = 10e^{-}$
 - или 36 26 = 10e⁻
- x = 10/2 = 5 эл.пар (5 молекул CO)
- [Fe(CO)₅] пентакарбонилжелезо

Правило Сиджвика (примеры)

- * Co^o [Ar]3d⁷4s² || 36Kr
- $*18 9 = 9e^{-};$
- * x = 9/2 = 4.5 (?)
- * радикал [·Co(CO)₄]
- * тетракарбонилкобальт (неуст.)
- * димер $[Co_{2}(CO)_{8}]$ (уст.) октакарбонилдикобальт

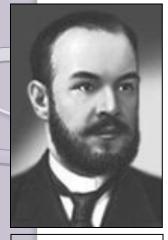

- $_{23}$ V° [Ar]3d³4s² || $_{36}$ Kr
- \bullet 18–5 = 13 e^- ;
- x = 13/2 = 6,5 (?)
- радикал [·V(CO)₆] (неуст.)
- или компл.соединение состава K[:V^{-I}(CO)₆]
 гексакарбонилванадат(-I) калия (уст.)


9. π -комплексы

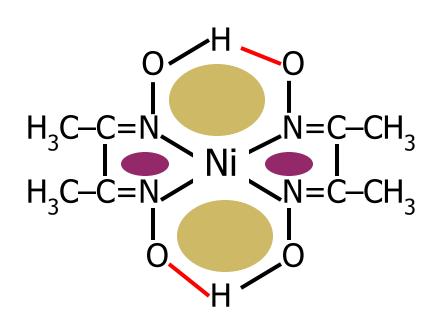
L — этилен C_2H_4 , бензол C_6H_6 , циклопентадиен C_5H_6 и т.п.

- Получение:
- циклопентадиен C_5H_6- слабая кислота HL^5
- 2 Na + 2HL = 2NaL + H₂↑
 циклопентадиенилнатрий
- $FeCl_{2} + 2Na(C_{5}H_{5})$ (+thf) = $= [Fe^{+||}(C_{5}H_{5})_{2}] + 2NaCl$ (в среде тетрагидрофурана)

Другие п-комплексы: $[Cr(C_6H_6)_2] - дибензолхром, [Mn^I(CO)_3(cp)] - цимантрен, [Co(cp)_2]OH$


бис(ψ иклопентадиенил)железо [Fe(C_5H_5)₂] (ферроцен)

10. Хелаты


- Внутр. сфера состоит из циклич. группировок, включающих М (комплексообразователь)
- NH₂CH₂COOH а-аминоуксусная кислота (глицин)
- $Cu(OH)_2 + 2 NH_2CH_2COOH =$ = $[Cu(NH_2CH_2COO)_2] + 2 H_2O$
- NH₂CH₂COO⁻ (глицинат-ион) бидентатный лиганд

$$H_{2}C - N O - C = O$$
 $O = C - O$
 $N - CH_{2}$
 H_{2}

<u>Реакция Чугаева</u>

• $Ni^{2+} + 2 NH_3 \cdot H_2O + 2H_2L =$ = $[Ni(HL)_2](\tau) + 2NH_4^+ + 2H_2O$ бис(диметилглиоксимато)никель(II)

диметилглиоксимато-ион HL-

Комплексные соединения в растворах

Неэлектролиты (слабые электролиты) $[Pt(NH_3)_2Cl_2]$ (ср. H_2O_2 , $CO(NH_2)_2$)

Сильные электролиты

$$[Pt(NH_3)_4]Cl_2 = [Pt(NH_3)_4]^{2+} + 2Cl^-$$
СОЛЬ
$$[Zn(NH_3)_4](OH)_2 = [Zn(NH_3)_4]^{2+} + 2OH^-$$
С. ОСН. $pH >> 7$
 $H[BF_4] + H_2O = H_3O^+ + [BF_4]^-$
С. К-Та $pH << 7$

Акватация: [...] +
$$H_2O \square [...] + L$$

Реакции обмена лигандов

$$[ML_n] + H_2O \square [ML_{n-1}(H_2O)] + L^0 (n = KY)$$

 $[H_2O] = Const, p-p разбавленный$

Ступенчатая диссоциация комплекса:

$$[ML_n] \square [ML_{(n-1)}] + L$$

 $[ML_{n-1}] \square [ML_{(n-2)}] + L$

...

$$[ML_2] \square [ML] + L$$
$$[ML] \square M + L$$

Постепенное разрушение комплекса

Суммарное уравнение диссоциации комплекса:

$$[ML_n] \square M + nL$$

Ступенчатая константа образования комплекса

• M + L
$$\square$$
 [ML]; $K_{1(o6p)} = \frac{[ML]}{[M][L]}$

• [ML] + L
$$\square$$
 [ML₂]; $K_{2(o\delta p)} = \frac{[\text{ML}_2]}{[\text{ML}][\text{L}]}$

...

•
$$[ML_{(n-1)}] + L \square [ML_n]; K_{n(o\delta p)} = \frac{[ML_n]}{[ML_{n-1}][L]}$$

Чем больше значение $K_{i(o6p)}$, тем сильнее смещено равновесие в сторону образования данного комплекса.

Полные (суммарные) константы образования

• M + L
$$\square$$
 [ML]; $\beta_1 = \frac{[ML]}{[M][L]}$

• M + 2L
$$\square$$
 [ML₂]; $\beta_{2(o\delta p)} = \frac{[ML_2]}{[M][L]^2}$

•

• M + nL
$$\square$$
 [ML_n]; $\beta_{n(o\delta p)} = \frac{[ML_n]}{[M][L]^n}$

Характеристика устойчивости комплексного соединения: чем больше значение β_n (обр), тем более устойчив комплекс данного состава.

Связь между полной и ступенчатой константами образования

$$\beta_{n(o6p)} = K_{1(o6p)} K_{2(o6p)} K_{3(o6p)} ... K_{n(o6p)}$$

Получение и применение $K_2[HgI_4]$

Сравнение констант образования и устойчивости комплексов

		[Cu(NH ₃) ₄] ²⁺		[CuBr ₄] ^{2–}	
		<i>K</i> _i	β_{i}	K _i	β _i
K_1 , β_1	1	1,4·10 ⁴	1,4·10 ⁴	4,5·10 ⁵	4,5·10 ⁵
K_2 , β_2	2	3,2·10 ³	4,5·10 ⁷	37	1,7·10 ⁷
K_3 , β_3	3	7,7·10 ²	3,5·10 ¹⁰	4,5	7,5·10 ⁷
Κ ₄ , β ₂	1	1,4·10 ²	4,7·10 ¹²	2,4	2,0.108

Сравнение устойчивости аммиачных комплексов

Ступени комплексообразования

$$[Cu(NH_3)_2]^+$$
 $K_{2(o6p)} = 5,0.10^4$
 $[Cu(NH_3)]^+$ $K_{1(o6p)} = 1,4.10^6$

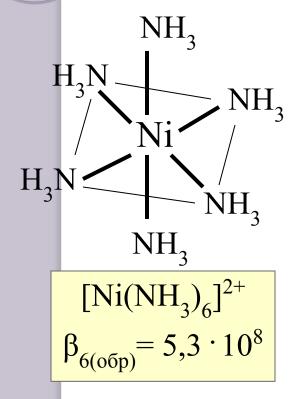
Природа комплексообразователя

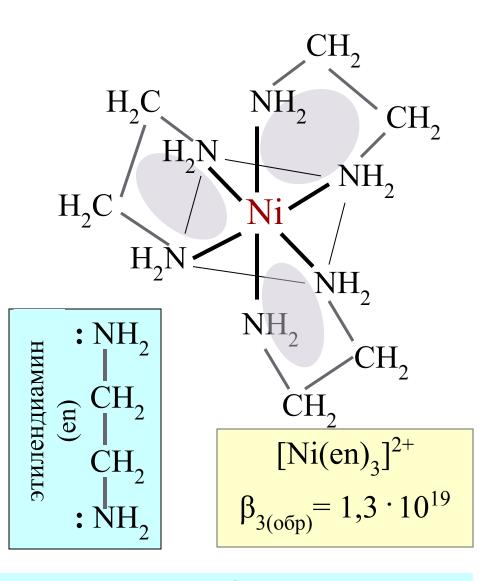
[Cu(NH₃)₂]⁺
$$\beta_{2(o6p)} = 7,0.10^{10}$$

[Ag(NH₃)₂]⁺ $\beta_{2(o6p)} = 1,1.10^7$

$$[Ag(NH_3)_2]^+$$
 $\beta_{2(o6p)} = 1,1.10^7$

Комплекс Cu(I) устойчивее, чем комплекс Ag(I)


Степень окисления комплексообразователя


$$[\text{Co}^{\text{II}}(\text{NH}_3)_6]^{2+}$$
 $\beta_{6(\text{o6p})} = 1.3 \cdot 10^5$

$$[Co^{III}(NH_3)_6]^{3+}$$
 $\beta_{6(06p)} = 3,2.10^{32}$

 $[\text{Co}^{\text{II}}(\text{NH}_3)_6]^{2+}$ $\beta_{6(\text{обр})} = 1,3\cdot 10^5$ $[\text{Co}^{\text{III}}(\text{NH}_3)_6]^{3+}$ $\beta_{6(\text{обр})} = 3,2\cdot 10^{32}$ Комплекс Co(III) устойчивее, чем комплекс Co(II)

Хелатэффект

 $[Ni(NH_3)_6]^{2+} + 3 en + 6H_2O = [Ni(en)_3]^{2+} + 6 NH_3 \cdot H_2O$