Методика проверки и оценки заданий с развернутым ответом: типы расчетных задач, способы их решения.

		Коды			Макс.	При-
Обо-		прове-		Уро-		
значе-		ряемых	Коды	вень	балл за	мерное
ние	Проверяемые элементы	элементов	требо-	слож-	вы-	время
зада-	содержания	содержа-	ваний	ности	пол	выпол-
	содержания	•	Бапии		нение	нения
ния в		НИЯ ПО		зада-	зада-	зада-ния
работе		кодифи-		КИН	кин	(мин.)
		катору				
39	Расчеты массы (объема, количества вещества)	4.3.5	2.5.2	В	4	10
	продуктов реакции, если одно из веществ дано в	4.3.6				
	избытке (имеет примеси), если одно из веществ	4.3.8				
	дано в виде раствора с определенной массовой	4.3.9				
	долей растворенного вещества.					
	Расчеты массовой или объемной доли выхода					
	продукта реакции от теоретически возможного.					
	Расчеты массовой доли (массы) химического					
	соединения в смеси					
40	Нахождение молекулярной формулы вещества	4.3.7	2.5.2	В	4	2 0

Код	
контроли-	Элементы содержания,
руемого	проверяемые заданиями КИМ
элемента	
4.3.5	Расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси)
4.3.6 Расчеты массы (объема, количества вещества) продуктов реакц одно из веществ дано в виде раствора с определенной массовог растворенного вещества 4.3.7 Нахождение молекулярной формулы вещества	
4.3.9	Расчеты массовой доли (массы) химического соединения в смеси
Код контроли- руемого умения	Умения и виды деятельности, поверяемые заданиями КИМ
2.5	Планировать/проводить:
2.5.2	Вычисления по химическим формулам и уравнениям

Расчетные задачи проверяют:

- знание законов химии, понимание химической сущности явлений и реакций, свойств веществ, характера их взаимодействия и закономерностей количественных отношений.
- сформированность универсальных учебных умений и наличие межпредметных компетенций, таких как умение работать с текстом, проводить анализ содержания задачи, определять физические величины, выполнять математические действия.

Умение решать расчетные задачи является основным показателем творческого усвоения предмета.

Задание 39

1. Инструкции по оцениванию

No	Выявление элемента ответа	Оценка	Примечание
п/п	(шаги оценивания)		
1	Выявить наличие в ответе	1 балл	Если допущена ошибка хотя бы в
	экзаменуемого записи уравнений		одном уравнении реакции, даже
	реакций, соответствующих		при условии, что это не влияет на
	условию задания.		ход дальнейших вычислений,
			выставляется 0 баллов за этот
			элемент ответа.
2	Выявить наличие в ответе	1 балл	Ответ должен учитывать все
	экзаменуемого расчётов, в		данные условия задачи.
	которых используются все		Обязательно должно быть указание
	физические величины, заданные в		на избыток какого-либо реагента,
	условии задания.		если это соответствует условию
			задачи.

3	Выявить наличие в ответе	1 балл	Ответ должен содержать все
	экзаменуемого логически		необходимые этапы расчётов, с
	обоснованной взаимосвязи		указанием пропорциональной
	физических величин, на		зависимости между количеством
	основании которых		или массой реагирующих веществ.
	проводятся расчёты.		Вычисление молярной массы
			веществ можно не приводить.
4	Выявить правильность всех	1 балл	В случае, когда в ответе содержится
	математических действий,		ошибка в вычислениях в одном из
	которые необходимы для		элементов (во втором, третьем или
	нахождения неизвестной		четвёртом), которая привела
	физической величины.		к неверному ответу, оценка за
			выполнение задания снижается
			только на 1 балл.

Углекислый газ объёмом 5,6 л (н.у.) пропустили через 164 мл 20%-ного раствора гидроксида натрия ($\rho = 1,22$ г/мл). Определите состав и массовые доли веществ в полученном растворе.

CY Dano:

$$V(CO_2) = 5,6 \text{ L}$$

 $V(NAOH) = 164 \text{ LLL}$
 $W(NAOH) = 20\%$ LLLL
 $W(NAOH) = 1,22\%$ LLLL
 $W(NAOH) = 1,22\%$ LLLL
 $W(NAOH) = 1,22\%$ LLLL
 $W(NAOH) = 1,22\%$ LLLLL

6)
$$m(H_2O) = 0.25 \cdot 18 = 4.52$$

8) $\omega(N_{12}Co_{3}) = \frac{26.5}{211.08} = 84)$ $m_{05us} = 200.082 + 112 = 211.08$
= 0.125 wew 12.5%.
9) $\omega(H_2O) = \frac{4.52}{211.08} = 0.213$ came 21.3%.
Ombeni: $\omega(N_{12}Co_{3}) = 12.5\%$, $\omega(H_2O) = 21.3\%$.

Элементы ответа:

- 1) рассчитаны количества веществ реагентов:
- 2) составлены уравнения возможных реакций между оксидом углерода (IV) и гидроксидом натрия, определено соотношение количеств веществ, участвующих в времней елены массы соли, щёлочи и масса вобределены массовые доли веществ в растворе:

6)
$$m(H20) = 0.25 \cdot 18 = 4.52$$

8) $\omega(N9_2 co_3) = \frac{26.5}{211.08} = 8.4)$ $m_{obss.} = 200.082 + 112 = 211.08$
= 0.125 wew 12.5%.
9) $\omega(H20) = \frac{4.52}{211.08} = 0.213$ vew 21.3%.
Ombenn: $\omega(N9_2 co_3) = 12.5\%$, $\omega(H20) = 21.3\%$.

Элементы ответа:

- 1) рассчитаны количества веществ реагентов:
- 2) составлены уравнения возможных реакций между оксидом углерода (IV) и гидроксидом натрия, определено соотношение количеств веществ, участвующих в ВРЭКНЕДелены массы соли, щёлочи и масса РЭКПРЕДелены массовые доли веществ в растворе:

CO2 + 2 Na OH -> Na, CO3 + M2 O $\sqrt{(CO_L)} = \frac{5,6}{22,9} = 0,205 \text{ (moss)}$ V(co2) = 5,6 d Mp-pa (NaOH) = 164.1,22=200,08(2) V p-pa (NaOh) = 164 Mu W (NaOH) = 20% $M(NaOH) = 200,08 \cdot 0,2 = 40,016(2)$ Sp-pa = 1, 22 2/ml $V(NaOH) = \frac{40,016}{40} = 1,0004 (Mall)$ $N(NaOH)_{olm} = 0,5909 (Malb)$ $M(Na,CO_3) = 0,205.96 = 19,68 (2)$ $M(NaOH)_{olm} = 0,5909.90 = 13,616 (2)$ mp-pa = 200,08 + 0,205,44 =209, 00 (2) W (Na, CO3) = 19,68 100% = 9,41 % $W(NaOH) = \frac{23,616}{209,1} = 100\% = 11,29\%$ Ombem: le nougnement parmbone cogepnumer Na, CO3 (W=9,418) U Na OH (N=11, 29%)

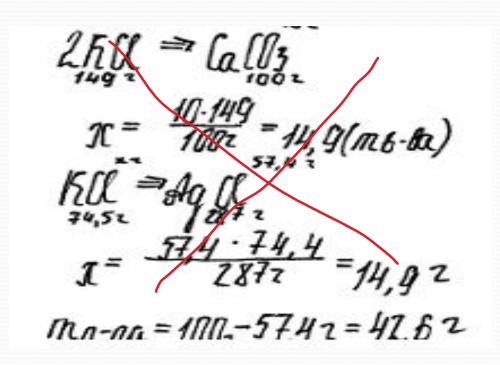
+2 NaOH -> Na, CO3 + H2O $\sqrt{(CO_L)} = \frac{5,6}{22,9} = 0,205 \text{ (moss)}$ V(co2) = 5,6 u мр-ра (NaOH) = 164.1,22=200,08 (2) V p-pa (NaOh) = 169 мм w (NaOK) = 20% $M(NaOH) = 200,08 \cdot 0,2 = 40,016(2)$ Spi-pa = 1, 22 2/ul V (NaOH) = 40,016 = 1,0004 (Mall) $N(NaOH)_{olm} = 0,5909 (Malb)$ $M(Na,CO_3) = 0,205.96 = 19,68 (2)$ $M(NaOH)_{olm} = 0,5909.40 = 13,616 (2)$ mp-pa = 200,08 + 0,205.44 =209, 00 (2) W (Na, CO3) = 19,68 100% = 9,41 % W (NaOH) = 23,616 = 100% = 11,29%

Ombem: le rougneman parmbone cogepnumer Na, CO3 (W=9,47%) U Na OH (W=11, 29%)

+2 NaOH -> Na, Co3 + H2O $\sqrt{(CO_L)} = \frac{5,6}{22,9} = 0,205 \text{ (moss)}$ V(co2) = 5,6 u мр-ра (NaOH) = 164.1,22=200,08 (2) V p-pa (NaOh) = 169 мм w (NaOK) = 20% $M(NaOH) = 200,08 \cdot 0,2 = 40,016(2)$ Spi-pa = 1, 22 2/ml V (Na OH) = 40,016 = 1,0004 (Mall) $N(NaOH)_{olm} = 0,5909 (Malb)$ $M(Na,CO_3) = 0,205.96 = 19,68 (2)$ $M(NaOH)_{olm} = 0,5909.40 = 13,616 (2)$ mp-pa = 200,08 + 0,205.44 =209,00 (2) W (Na, CO3) = 19,68 100% = 9,41 % W (NaOH) = 23,616 = 100% = 11,29%

Ombem: le rougneman parmbone cogepnumer Na, CO3 (W=9,47%) U Na OH (W=11, 29 %)

Медь, выделившаяся в результате взаимодействия 2,6 г цинка с 160 г 5% р-ра сульфата меди, полностью прореагировала с 20 мл разбавленного р-ра HNO_3 (плотность 1,055 г/мл). Определить массовую долю нитрата меди в полученном растворе.


Медь, выделившаяся в результате взаимодействия 2,6 г цинка с 160 г 5% р-ра сульфата меди, полностью прореагировала с 20 мл разбавленного р-ра HNO_3 (плотность 1,055 г/мл). Определить массовую долю нитрата меди в полученном растворе.

goy Veneme. 74 + Cu SO4 -> Cu + Zn SQ m (Zu) = 2,62. 3 tu + 8 UNO, (most) -> 3 Cu NO, (mp (Cu SOu) 21602. J (Cuso,) 25% @ 2NO1+4K20 cue ne odopote > V (NNO3) 20 m. n (2n) = 3,6 = 0,04 mans P (HW3) 2 1,055 2/mm m & (Cuso,) = 160.0,05 = 8=. ~ (lu (NO,)) -? n (Cu 50,) = 760 - 905 mans Cu SO, 6 mydriter => commander n (Cm) 20,04 mans. m (HNO2) = p. V = 21,12. n (HNO3) = 21,1 = 0,335 => HNO3 by Surve => n (((NO,) 2 0,04 mane m (Cu(NO3)2) 2 0,04 . 188 2 (5582) 7,522 m (4,0)=18.0,053= 3954= 0,962 n (4,0) = 0,053 mans J (Cn (NO3)2) = m(Cn (NO3)2) = 7,52 J (Cn (NO3)2) = m(cn (NO3)2) = 21,1+996+4,52

goy Veneme. 74 + Cuson -> Cu + Zuson Dano: m (Zu) = 2,62. 3 tu + 8 UNO, (most) -> 3 Cu NO, (mp (Cu SOu) 21602. J' (Cuso,) =5%. @ 2NO1+4K20 cue ne odopore > V (NNO3) 220 m. n (2n) = 3,6 = 0,04 mans P (HW3) 2 1,055 2/mm m & (Cuso,) = 160.0,05 = 8=. 2) (lu(NO,)) -? n (Cu 50,) = 760 - 905 mans Cu SO, 6 mydriter => commander n (Cm) 20,04 mans. m (HNO2) = p. V = 21,12. n (HNO3) = 21,1 = 0,335 => HNO3 by Surve => n (((NO,) 2 0,04 man m (Cu(NO3)2) 2 0,04 . 188 2 (5582) 7,522 m (4,0)=18.0,053=9954= 0,962 n (4,0) 2 0,053 mans J (Cn (NO3)2) = m(Cn (NO3)2) = 7,52 J (Cn (NO3)2) = mp-pa = 21,1+996+4,52

25

Если смесь хлоридов калия и кальция добавить к раствору карбоната натрия, то образуется 10 г осадка. Если ту же смесь добавить к раствору нитрата серебра, то образуется 57,4 г осадка. Определите массовую долю хлорида калия в исходной смеси.

1/ Call 2+ Na 2 ll 3 -> Call 3+ 2 Nall
n/ Call 3/2 102 = 0,1 wall

n/ Call 2/2 h / Na Call 2/2 4/ wall

m/ Call 2/2 4/ Na Call 2/2 4/ wall

m/ Call 2/2 41.11/2 11,12 2/ KCl + Ag NO, -7 KNO, + Agel & n (Agel) 2 57,4 294 event. 3) Manuecu = 29,82 + 11,12 40,92. W (KCl) 2 29,8 20,7286 ment 72,86 % \$
Omben: 42,86 %.

Элементы ответа:

1) записаны уравнения реакций:

3) вычислены массы веществ и их смеси:

2) рассчитано количество вещества реагентов: 4) вычислена массовая доля хлорида калия в смеси:

3	Выявить наличие в ответе	1 балл	Ответ должен содержать все
	экзаменуемого логически		необходимые этапы расчётов, с
	обоснованной взаимосвязи		указанием пропорциональной
	физических величин, на		зависимости между количеством
	основании которых		или массой реагирующих веществ.
	проводятся расчёты.		Вычисление молярной массы
			веществ можно не приводить.
4	Выявить правильность всех	1 балл	В случае, когда в ответе содержится
	математических действий,		ошибка в вычислениях в одном из
	которые необходимы для		элементов (во втором, третьем или
	нахождения неизвестной		четвёртом), которая привела
	физической величины.		к неверному ответу, оценка за
			выполнение задания снижается
			только на 1 балл.

1/ Call 2+ Na, ll 3 -> Call 3+ 2 Nall
n/ Call 3/2 102 = 0,1 wall.

n/ Call 2/2 n/ Na Call 2/2 0,1 wall.

m/ Call 2/2 n/ Na Call 2/2 0,1 wall

m/ Call 2/2 0,1 11/2 11,12 + 2/ KCl + Ag NO, -7 KNO, + Agel & n (Agel) 2 57,4 = 94 event. 3) Manuecu = 29,82 + 11,12 40,92. W (KCl) 2 29,8 20,7286 ment 42,86% to Onebem: 42,86%.

Элементы ответа:

1) записаны уравнения реакций: —

- 3) вычислены массы веществ и их смеси: 🛨
- 2) рассчитано количество вещества реагентов: -4) вычислена массовая доля хлорида калия в смеси: ±

Смесь натрия и оксида натрия растворили в воде. При этом выделилось 4,48 л (н.у.) газа и образовалось 240 г раствора с массовой долей гидроксида натрия 10%. Определите массовую долю натрия в исходной смеси.

C4. Remaine: Bagara 0,2

$$1 \text{ Na.} + 2 \text{ Na} \text{ OH} + \text{ Na} \text{ OH}$$
 $1 \text{ Na.} + 2 \text{ Na} \text{ OH} + \text{ Na} \text{ OH}$
 $1 \text{ Na.} + 2 \text{ Na} \text{ OH} + \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH} + \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH} + \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH} + \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH} + \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH} + \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH} + \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH} + \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} + 2 \text{ Na} + 2 \text{ Na} \text{ OH}$
 $1 \text{ Na} + 2 \text{ Na} +$

40. (Демоверсия ЕГЭ 2016).

При сжигании образца некоторого органического соединения массой 14,8 г получено 35,2 г углекислого газа и 18,0 г воды.

Известно, что относительная плотность паров этого вещества по водороду равна 37. В ходе исследования химических свойств этого вещества установлено, что при взаимодействии этого вещества с оксидом меди(II) образуется кетон.

На основании данных условия задания:

- 1) произведите вычисления, необходимые для установления молекулярной формулы органического вещества;
- 2) запишите молекулярную формулу исходного органического вещества;
- 3) составьте структурную формулу этого вещества, которая однозначно отражает порядок связи атомов в его молекуле.

Решение 1.

Содержание верного ответа:

(допускаются иные формулировки ответа, не искажающие его смысла)

Элементы ответа.

1) Найдено количество вещества продуктов сгорания:

общая формула вещества —
$$C_x H_y O_z$$
 $n(CO_2) = 35,2 / 44 = 0,8$ моль; $n(C) = 0,8$ моль $n(H_2O) = 18,0 / 18 = 1,0$ моль; $n(H) = 1,0 \cdot 2 = 2,0$ моль $m(O) = 14,8 - 0,8 \cdot 12 - 2 = 3,2$ г; $n(O) = 3,2 / 16 = 0,2$ моль

2) Определена молекулярная формула вещества:

$$M_{\text{ист}}(C_x H_y O_z) = 37 \cdot 2 = 74 \text{ г/моль}$$
 $\mathbf{x} : \mathbf{y} : \mathbf{z} = \mathbf{0.8} : \mathbf{2} : \mathbf{0.2} = \mathbf{4} : \mathbf{10} : \mathbf{1}$ вычисленная формула — $C_4 H_{10} O$ $M_{\text{выч}}(C_x H_y O_z) = 74 \text{ г/моль};$ молекулярная формула исходного вещества $C_4 H_{10} O$ 3) Составлена структурная формула вещества:

3) Составлена структурная формула вещества:

Решение 2.

Общая формула вещества

$$C_x H_y O_z$$
 $\mathbf{n}(CO_2) = 35,2 /44 = 0,8$ моль; $\mathbf{n}(C) = 0,8$ моль $\mathbf{n}(H_2O) = 18,0 / 18 = 1,0$ моль; $\mathbf{n}(H) = 1,0 \cdot 2 = 2,0$ моль; $\mathbf{m}(C_x H_y O_z) = 37 \cdot 2 = 74$ г/моль; $\mathbf{n}(C_x H_y O_z) = 14,8 / 74 = 0,2$ моль; $\mathbf{n}(C_x H_y O_z) = 14,8 / 74 = 0,2$ моль; $\mathbf{n}(C_x H_y O_z) = 14,8 / 74 = 0,2$ моль; $\mathbf{n}(C_x H_y O_z) = 14,8 / 74 = 0,2$ моль; $\mathbf{n}(C_x H_y O_z) = 14,8 / 74 = 0,2$ моль; $\mathbf{n}(C_x H_y O_z) = 10,8$ моль; $\mathbf{n}(C_x H_y O_z) = 10,8$ моль; $\mathbf{n}(C_x H_y O_z) = 10,8$ моль; $\mathbf{n}(C_x H_y O_z) = 14,8 / 74 = 0,2$ моль; $\mathbf{n}(C_x H_y O_z) = 10,8$ моль; $\mathbf{n}(C_x H_y O_z) = 14,8 / 74 = 0,2$ моль; $\mathbf{n}(C_x H_y O_z) = 14,8 / 74 = 0,2$ моль; $\mathbf{n}(C_x H_y O_z) = 14,8 / 74 = 0,2$ моль; $\mathbf{n}(C_x H_y O_z) = 14,8 / 74 = 0,2$ моль; $\mathbf{n}(C_x H_y O_z) = 10,8$ моль; $\mathbf{n$

Молекулярная формула исходного вещества $C_4H_{10}O$.

Решение 3.

Если при взаимодействии органического вещества с оксидом меди(II) образуется кетон, то это вещество — вторичный спирт. Общая формула вещества:

$$\mathbf{C}_{n}\mathbf{H}_{2n+2}\mathbf{O}$$
.

 $\mathbf{M} (\mathbf{C}_{n}\mathbf{H}_{2n+2}\mathbf{O}) = 37 \cdot 2 = 74 \ \Gamma/\text{моль};$
 $\mathbf{14}n + \mathbf{18} = \mathbf{74};$
 $n = 4.$

Молекулярная формула исходного вещества $C_4H_{10}O$

Решение 4.

$$n(CO_2) = 35,2 /44 = 0,8$$
 моль;

$$n(H_2O) = 18,0 / 18 = 1,0$$
моль;

Если при взаимодействии органического вещества с оксидом меди(II)

образуется кетон, то это вещество – вторичный спирт.

Общая формула вещества:

$$C_n H_{2n+2} O$$
.

Уравнение реакции горения спирта:

$$C_nH_{2n+2}O + 3n/2 O_2 = nCO_2 + (n+1)H_2O$$

Согласно уравнению реакции

$$n / 0.8 = (n+1) / 1$$

$$n = 0.8n + 0.8$$

$$n=4$$

Молекулярная формула исходного вещества $C_4H_{10}O$

Решение 5.

Если при взаимодействии органического вещества с оксидом меди(II) образуется кетон, то это вещество — вторичный спирт (мы не знаем, насыщенный или нет).

В молекуле спирта содержится один атом кислорода.

$$M(C_xH_yO) = 37 \cdot 2 = 74$$
 г/моль; $M(C_xH_yO) = 12x + y + 16 = 74$ г/моль $12x + y = 58$ г/моль

Решаем уравнение в целых числах подбором:

X	1 2		3	4	
У	46	34	22	10	

Первые три варианта не подходят, т.к. в этом случае число атомов водорода превышает максимально допустимое 2x+2. Четвертый вариант подходит. Молекулярная формула исходного вещества $C_4H_{10}O$

Задание 40

1. Инструкции по оцениванию

$N_{\underline{0}}$	Выявление элемента ответа	Оценка	Примечание
п/п	(шаги оценивания)		
1	Выявить наличие в ответе	1 балл	
	экзаменуемого записи		
	правильных вычислений,		Ответ должен содержать
	необходимых для		расчеты, подтверждающие
	установления молекулярной		соответствие между
	формулы вещества.		приведенной молекулярной
2	Выявить наличие в ответе	1 балл	формулой и условием
	экзаменуемого записи		задачи.
	молекулярной формулы		
	вещества.		

При сгорании 4,48 л (н.у.) газообразного органического вещества получили 35,2 г углекислого газа и 10,8 мл воды. Плотность этого вещества составляет 2,41 г/л (н.у.). Известно также, что это вещество не реагирует с аммиачным раствором оксида серебра, а при реакции его с избытком бромной воды происходит присоединение атомов брома только ко вторичным атомам углерода.

40 1) Пі. к данное вещ-во <u>пагообразное</u>, то мотено предположить, что его маскумерная формула ва $H_{\rm an}$ ми ва вещество бать не мотет, т. к амкант не реализуют с hr_* (пригоединение).

~ 40.

Dans:

Secreme:

1) Haugau n (CD2)

$$n(CO2) = \frac{26,881}{22,411/4010} = 1,2$$
 was

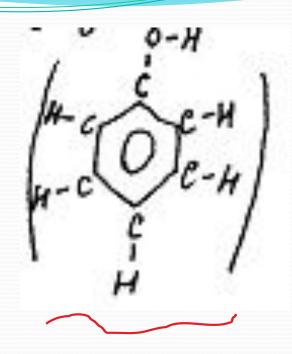
2) Haugen n(c) u m(c)

6) Haugen
$$n(0)$$

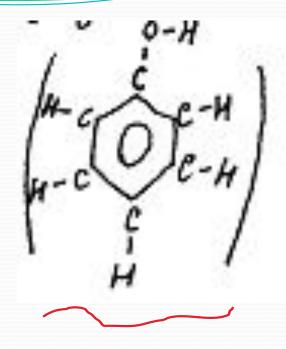
 $n(0) = \frac{3.42}{162 \text{ fuars}} = 0.2 \text{ mass}$

3.
$$\sqrt{(HaO)} = \frac{10.81}{1871 \text{ month }} = \frac{0.6 \text{ month }}{1.8 \text{ month }} = \frac{0.6 \text{ month }}{1.8 \text{ month }} = \frac{m}{1.8 \text{ month }}$$
4. $\frac{1400}{1000} = \frac{2H}{1000} = \frac{0.6 \text{ month }}{10000} = \frac{m}{10000}$

7.
$$n(C):n(H):n(D) = 1,2 mons: 0,18 mons: 0,2675 mons = 4,486: 0,446: 10:1:2,3$$


8. CgHO2- uemuneau mener openingua

3	Выявить наличие в ответе	1 балл	В случае если структурная
	экзаменуемого записи		формула органического
	структурной формулы		вещества не записана как
	вещества, которая		отдельный элемент ответа,
	отражает порядок связи и		а присутствует в уравнении
	взаимное расположение		реакции (в последнем
	заместителей и		элементе ответа) и
	функциональных групп в		записана правильно, то
	молекуле органического		балл за «структурную
	вещества в соответствии с		формулу» засчитывается.
	условием задания.		


1)
$$A(co_2) = \frac{26,882}{22,4} = 1,2$$
 wass

 $A(H_20) = 10,8$ w. 12 = $10,82$.

 $A(H_20) = \frac{10,82}{132} = 0,6$ wass.

4	Выявить наличие в ответе	1 балл	В ответе экзаменуемого
	экзаменуемого записи		допустимо использование
	уравнения реакции, на которую		структурных формул
	даётся указание в условии		разного вида
	задания, с использованием		(развёрнутой,
	структурной формулы		сокращённой, скелетной),
	органического вещества.		которые однозначно
			отражают порядок связи и
			взаимное расположение
			заместителей и
			функциональных групп в
			молекуле органического
			вещества.

40.
$$A = 18,87$$
 $V_{CQ} = 26,88$
 $V_{H_{Q}D} = 10,8$ man $V_{H_{Q}D} = 10,2$ man $V_{H_{Q}D} = 10,2$

4	Выявить наличие в ответе	1 балл	В ответе экзаменуемого
	экзаменуемого записи		допустимо использование
	уравнения реакции, на которую		структурных формул
	даётся указание в условии		разного вида
	задания, с использованием		(развёрнутой,
	структурной формулы		сокращённой, скелетной),
	органического вещества.		которые однозначно
			отражают порядок связи и
			взаимное расположение
			заместителей и
			функциональных групп в
			молекуле органического
			вещества.

40.
$$A = 18.8 \text{ T}$$
 $V_{CQ} = 26.88 \text{ R}$
 $V_{H_{Q}} = 10.8 \text{ RM}$
 $V_{H_{Q}} = 10.8 \text{ RM}$

OTBET: C6 H5 OH (PEHON).

Некоторое органическое соединение содержит 40,0% углерода и 53,3% кислорода по массе.

40. There were.

Tyore
$$m = 100 \, 2$$
, $m = 100 \, 2$

1) Найдено соотношение атомов углерода, водорода и кислорода в соединении:

$$w(H) = 100 - 40,0 - 53,3 = 6,7\%$$

 $x : y : z = 40/12 : 6,7/1 : 53,3/16 = 3,33 : 6,7 : 3,33 = 1 : 2 : 1$

40.
$$Cx My O_{\overline{x}}$$

 $40,0\%(C) | => 6,7\%(H)$
 $53,3\%(0) | => 6,7\%(H)$
 $x:y: \varphi = 40,0:6,2:53,3 = 3,3:6,7:3,3=1:2:1$

Спасибо за внимание!