The LaSt Day CS 161: Lecture 19

4/25/17

LIE TRY CRY

DOWN NOT TO CRY A LOT

Coals

Take unmodified POSIX/Win32 applications . . .

Run those applications in the cloud . . .

On the same hardware used to run big-data apps . ..
... and give them cloud-scale IO performance!

PostgreSQL

pq Visual Studio

2013

Microso ft

Exchange2013

Coals

* Take unmodified POSIX/Win32 applications . . .

* Run those applications in the cloud . . .

* On the same hardware used to run big-data apps . . .
* ...and give them cloud-scale 10 performance!

Postdikfsugh

€-0
Mmao

™

—

Microso ft- ’

Exchange:zos

Why Do | Want To Do This?
* Write POSIX/Win32 app once, automagically

have fast cloud version

* Cloud operators don't have to o
proprietary or sensitive protoco

« Admin/hardware efforts that he

oen up their
S

p big data

apps help POSIX/Win32 apps (and vice

versa)

Naive Solution: Network RAID

PostgreSQL &
B)
e C I I p S e Microsoft"\“
Exchange2013

Blizzard
virtual drive

I I
I I
I I
I I
I I
I I
I I
I I
V_ vV

vV V. _V Vv V¥

.
.

The naive approach for
implementing virtual disks
does not maximize spindle
parallelism for POSIX/Win32
applications which frequently
\ issue fsync() operations to
L\ maintain consistency.

.
.

The naive approach for
implementing virtual disks
does not maximize spindle
parallelism for POSIX/Win32
applications which frequently
\ issue fsync() operations to
L\ maintain consistency.

Virtual disk

TR RS
i i i i Remote disks

XY | Virtual disk

¥ ij%h (WY)(W)_| — 10 queue
f wﬁ \ \ l

send(w)

Network

Wy

Time

Wy

Server OS
fwrite(wx)

fwrite(W)

Client App -
C ;mitegg&oq (W) (W) —
QO™
fwrite (@hy
Y- Vi
e R}’:?Vﬁl&béﬁﬁ)
ay[w;ve to pay

two arciictreawv)

lategengy OS
fwrite(wx)

|O queue

'

Time

fwrite(W)

Fixing I0Op Convoy Dilation

=4

Segment size

Virtual drive

)
I\
I\
|
|
|
|
| /
4
Remote disks

Fixing I0Op Convoy Dilation

Segment size=4

Virtual drive

Rack Locality

20 Gbps
cross-rack

L

| \ / 1

i

10 Gbps to all

rac

K peers

L

i

10 Gbps to a
rack peers

Rack Locality In A Datacenter

S i2e =4

ViBllzaladdirzbeht \1

v

|

|

| N
Rack 1 I

| \

alr

»

Remote disk i i

Flat Datacenter Storage (FDS)

* Idea 1: Build a datacenter network with full-bisection
bandwidth (i.e., no oversubscription)

— Half of the servers can simultaneously communicate with the
other half, and the network won't melt

— In other words, the core of the network has enough
bandwidth to handle 2 the sum of the servers’ NIC speeds

* Ildea 2: Give each server enough NICs to be able to
read/write the server’s disks at full sequential speeds

— Ex: If one disk has sequential r/w bandwidth of 128 MB, and a
server has 10 disks, give the server 10 x 128 MB =10 Gbps NIC

* Result: Locality-oblivious remote storage

— Any server can access any disk as fast as if the disk were local
(assuming datacenter RTTs << than seek+rotational delays)

— FDS is useful for big data applications like MapReduce too!

Blizzard as FDS Client

Blizzard client handles:

NTFS driver o
Virtual SATA Read,Write,Flush — Nested striping
interface -~ ¢ == — Delayed durability
Blizzard disk driver semantics
________ |
Kernel space /" ALPCshared % Zero-copy buffer shared by
USEFSBAEE l'______§§EEi9_r15 _______ ——\‘ kernel and user-level code!
[Blizzard Client } FDS PrOVIdeSI
r ------------------- . ° °
: FDS Library — Locality-oblivious
storage

— RTS/CTS to avoid edge
congestion

The problem with fsync()

* Used by POSIX/Win32 file systems and applications
to implement crash consistency

— On-disk write buffers let the disk acknowledge a write
quickly, even if the write data has not been written to a
platter!

— In addition to suE orting read() and write(), the disk also
implements flus 8

* The flush() command only finishes when all writes
issued prior to the flush() have hit a platter

— fsync() system call allows user-level code to ask the OS to
issue a flush()

— Ex: ensure data is written before metadata

Write Write

data fsync() metadata
——

WRITE BARRIERS
RUIN
BIRTHDAYS

Stalled operations
limit parallelism!

Delayed Durability in Blizzard’s Virtual Drive

* Decouple durability from ordering

« Acknowledge flush() immediately . . .
— ... but increment flush epoch

— Tag writes with their epoch number,
asynchronously retire writes in epoch order

Delayed Durability in Blizzard’s Virtual Drive

* Decouple durability from ordering

« Acknowledge flush() immediately . . .
— ... but increment flush epoch

— Tag writes with their epoch number,
asynchronously retire writes in epoch order

WY@ Fl WX]_ WY]_ F2 WYZ

Blizzard

W f W fw
Remote Y, WY 1 Y
disk Y1

ee\llw @Harea F&Oﬁleqlzg@rg[ﬁa\{pgtual Drive
. &’é@@@@l@r@fm@@nwtﬁ@ﬁ ordermg

Il epo durabl
@%ﬁ j qg%(ﬁgﬁlg)e@re (g@n ﬁll}ﬁe ‘durable

— No \awités drem &t ﬂa;sbcé\pcacé\ durable

* Prepx mnébst,emﬁyhé@@ dcwmw?bé@r most
AP RSy RNIASS IOHER RGBS T NANG R er
WY@ Fl WX]_ WY]_ F2 WYZ
App

Blizzard

W W f W fw
Remote Y, Y, 1 Y
disk Y1

Isn’t Blizzard buffering a lot of data?

- N
Epoch 3, >

\ Cannot issue!

Epocwi

Epoc

Epoc

Log-based Writes

* Treat backing FDS storage as a distributed log
— Issue block writes to log immediately and in order

— Blizzard maintains a mapping from logical virtual disk
blocks to their physical location in the log

— On failure, roll forward from last checkpoint and stop
when you find torn write, unallocated log block with
old epoch number

Roll-forward Lost

stops, next
g write goes here

Write

stream W
Remote
log ""@ Wl W3

Summary of Blizzard's Design

Virtual * Problem: 10p Dilation
drive » Solution: Nested striping

* Problem: Rack locality
constrains parallelism

* Solution: Full-bisection
networks, match disk and
network bandwidth

Write W_ W, W, W * Problem: Evil fsync()s
stream 9 1 2 3 . ol
R >« Solution: Delayed durability
Remote [y, T, y (note that the log is
log "ol 3 nested-striped)

 Application issues a bunch of parallel reads or writes

Throughput (MB/s)

Throughput Microbenchmark

— In this experiment, we use nested striping but synchronous
write-through (i.e., no delayed durability tricks—a write does not
complete until it is persistent)

— Blizzard virtual disk backed by 128 remote physical disks, and used
single replication

1200
1000
800
600
400
200
0

Perf bug in storage

controller :-(

32 KB

64 KB 128 KB

Block Size

256 KB

Seq. Writes
[1Seq. Reads
0 Rand. Writes

B Rand. Reads

Throughput (MB/s)

Application Macrobenchmarks
(Write-through, Single Replication)

O Local Disk
300 B Blizzard Disk

ol

X (e o O oY P 0
®\N\,CX€’ \6‘6‘ \‘.\(0‘)6 0\((’ G CDO-\’ <

o

- 200
-

B

g7 150
-

o =

< o 100
o2

= 50
=

(&)

X

i 0

De

ayed Durability: Hiding

Replication Penalties

Just as fast as fast ack, but has
to buffer less data (and thus
loses less data after crash)

L4

fa="fast acknowledgment”
(i.e., delayed durability but

no log-based writes)‘

