д.х.н., проф. Хонина Татьяна Григорьевна

Основные закономерности химических реакций

Екатеринбург 2019-20

План лекции

- 1. Понятия скорости гомогенной и гетерогенной реакций. Зависимость скорости химической реакции от концентрации реагирующих веществ, давления, температуры. Закон действия масс, правило Вант-Гоффа.
- 2. Сущность химического равновесия и условие его наступления. Константа химического равновесия. Определение направления смещение химического равновесия в соответствии с принципом Ле Шателье.
- 3. Понятие раствор. Типы растворов. Способы выражения состава (концентрации) растворов
- 4. Теория электролитической диссоциации. Степень и константа диссоциации. Сильные и слабые электролиты
- 5. Диссоциация воды, ионное произведение воды. Водородный показатель. Шкала pH растворов
- **6.** Гидролиз солей
- 7. Реакции ионного обмена, условия их протекания. Порядок составления ионных уравнений
- 8. Сущность окислительно-восстановительных реакций и условие их протекания. Степени окисления атомов и порядок их определения. Составление уравнений окислительно-восстановительных реакции на основе метода электронного баланса

П.1. Понятия скорости гомогенной и гетерогенной реакций. Зависимость скорости химической реакции от концентрации реагирующих веществ, давления, температуры. Закон действия масс, правило Вант-Гоффа

ХИМИЧЕСКАЯ КИНЕТИКА изучает скорость и механизмы химических реакций.

Простые (элементарные) реакции протекают в одну стадию.

Сложные реакции состоят из нескольких стадий, среди сложных реакций выделяют:

последовательные реакции параллельные реакции цепные реакции

ПОСЛЕДОВАТЕЛЬНЫЕ, ПАРАЛЛЕЛЬНЫЕ И ЦЕПНЫЕ РЕАКЦИИ

Последовательные реакции протекают в несколько последовательных стадий.

Скорость такой реакции определяется скоростью самой медленной реакции.

Параллельные реакции - одновременно протекают несколько процессов. Скорость такой реакции определяется скоростью самой быстрой реакции.

Цепные реакции начинаются с образования активных настиц (свободных радикалов), которые создают цепь

DESKLINI

Скорость реакции

Скорость реакции (V) — изменение концентрации реагирующих веществ или продуктов реакции в единицу времени (при постоянном объеме системы).

Различают среднюю и мгновенную (истинную) скорость реакции.

• Средняя – скорость в данном интервале времени

$$v_{\rm cp} = \pm \frac{\Delta C}{\Delta t} = -\frac{C_2 - C_1}{t_2 - t_1}$$

- •Мгновенная скорость в данный момент времени:
- $V_{M\Gamma H.} = \pm dc/dt$ (производная концентрации по времени)

Гомогенные реакции

Реакции, протекающие в однородной среде, состоящей из одной фазы (раствор, газовая фаза), называются гомогенными.

Гомогенные реакции протекают во всем объеме.

Скорость гомогенной реакции равна изменению количества вещества в единицу времени в единице объема

$$v_{ ext{fom}} = rac{\Delta n}{\Delta t * V}$$

$$C = rac{n}{V} \qquad [v_{ ext{fom}}] = rac{ ext{моль}}{ ext{c} * ext{m}^3} = rac{ ext{моль}}{ ext{c} * ext{л}}$$
 $v_{ ext{fom}} = rac{\Delta C}{\Delta t}$

Гетерогенные реакции

Гетерогенные реакции протекают в неоднородной среде (вещества в разных агрегатных состояниях или несмешивающиеся жидкости); такие реакции протекают на поверхности раздела фаз.

Скорость гетерогенной реакции - изменение количества вещества за единицу времени на единице площади поверхности раздела фаз.

n- число молей

$$v_{\text{гет}} = \frac{\Delta n}{\Delta t * S}$$
 $[v_{\text{гет}}] = \frac{\text{моль}}{c * \text{м}^2}$

Скорость реакции

зависит от:

- •концентрации
- •температуры
- •давления
- •внешних воздействий
- •присутствия катализаторов
- •для гетерогенных реакций от степени дисперсности (раздробленности) вещества.

ЗАВИСИМОСТЬ СКОРОСТИ РЕАКЦИИ ОТ КОНЦЕНТРАЦИИ

Закон действия (действующих) масс, Гульдберг и Вааге (1864-1867г.г.)

Скорость простых реакций прямо пропорциональна произведению молярных концентраций реагирующих веществ, взятых в степенях их стехиометрических коэффициентов.

$$A + B = C + D$$

$$\mathbf{V} = \mathbf{k} \cdot \mathbf{C}_{\mathsf{A}} \cdot \mathbf{C}_{\mathsf{B}}$$

Если:

$$mA + nB = pC + pD$$

$$V = k C_A^m C_B^n$$

ЗАВИСИМОСТЬ СКОРОСТИ РЕАКЦИИ ОТ ТЕМПЕРАТУРЫ

1. Правило Вант - Гоффа:

При повышении температуры на 10°, скорость большинства реакций увеличивается в 2 – 4 раза.

$$\upsilon_2 = \upsilon_1 \cdot \gamma^{\frac{t_2 - t_1}{10}}$$

$$\frac{v_{2}}{v_{1}} = \gamma^{\frac{\Delta t}{10}}$$

У температурный коэффициент скорости

2. Уравнение Аррениуса

$$\mathbf{k} = \mathbf{A} \cdot \mathbf{e}^{-\frac{\mathbf{E}_{\mathbf{a}}}{\mathbf{R}\mathbf{T}}}$$

где 🕏 - константа скорости реакции;

основание натурального логарифма;


Еа - энергия активации;

R - универсальная газовая постоянная;

Т - температура по шкале Кельвина;

А - коэффициент пропорциональности.

ЭНЕРГИЯ АКТИВАЦИИ. АКТИВИРОВАННЫЙ КОМПЛЕКС

На пути всех частиц, вступающих в реакцию, имеется энергетический барьер, равный энергии активации (Еа)

Энергия активации - это некоторая минимальная избыточная энергия, которой должны обладать частицы для того, чтобы их столкновение было эффективным, т. е. привело к образованию нового вещества.

Частицы, обладающие такой энергией, называются активными. В ходе реакции система проходит через переходное состояние, т. е. через образование активированного комплекса (Ак).

Ак - группировка частиц, находящихся в процессе реакции.

Катализ

Катализаторы — вещества, изменяющие скорость реакции, но не входящие в состав продуктов реакции

Гомогенный и гетерогенный катализ

Механизм катализа:
$$A + B = AB$$

включает две стадии: 1)
$$A + K = AK$$

$$2) AK + B = AB + K$$

Примеры:

1. Гомогенный катализ
$$2SO_2 + O_2 = 2SO_3$$

1)
$$O_2 + 2NO$$
 (кат.) = $2NO_2$

2)
$$SO_2 + NO_2 = SO_3 + NO$$

2. Гетерогенный катализ
$$2SO_2 + O_2 = 2SO_3$$

1) $SO_2 + V_2O_5$ (кат.) = $SO_3 + V_2O_4$

2)
$$V_2O_4 + O_2 = V_2O_5$$

П.2. Сущность химического равновесия и условие его наступления. Константа химического равновесия. Определение направления смещение равновесия в соответствии с принципом Ле Шателье

Химические реакции:

- Необратимые
- $A + B \rightarrow D + E$

- $Hg(NO_3)_2 + K_2S \rightarrow HgS\downarrow + 2KNO_3$
- D + E ≠

• A + B
$$\frac{1}{2}$$
 D + E

1 – прямая реакция

2 – обратная реакция

•
$$H_2 + I_2 + 2HI$$

• D + E
$$\rightleftharpoons$$
 A + B

Система

- Произвольно выбранная часть пространства, содержащая одно или несколько веществ и отделенная от окружающей среды поверхностью раздела (реальной или мысленной)
- Параметры системы: *p, V, T, c,* ...

Системы

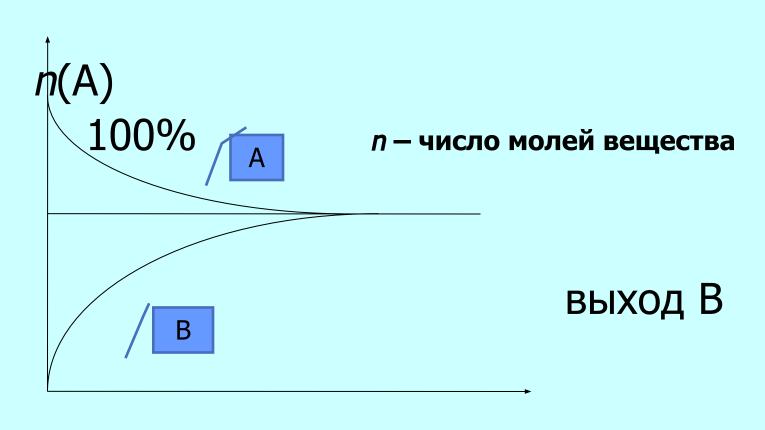
Гомогенные (состоят из одной фазы) (состоят из двух или более фаз)

Фаза – часть гетерогенной системы, ограниченная поверхностью раздела и характеризующаяся одинаковыми физическими свойствами во всех своих точках

Равновесное состояние

 Такое состояние системы, когда при постоянных внешних условиях параметры системы не изменяются во времени

Динамическое равновесие:


с одинаковой скоростью

Признаки истинного химического равновесия

- 1. В отсутствие внешних воздействий состояние системы остается неизменным.
- 2. При наличие внешних воздействий система переходит в другое состояние равновесия.
- 3. При прекращении внешних воздействий система возвращается в исходное состояние.
- 4. Состояние системы не зависит от того, с какой стороны она подходит к равновесию.

Достижение равновесия в системе

$$A = \frac{1}{2}$$
 B

0 время

Закон действующих масс

- Като Максимилиан Гульдберг и Петер Вааге (1864–1867):
- В условиях химического равновесия при постоянной температуре отношение произведения молярных концентраций продуктов реакции, взятых в степенях, равных их стехиометрическим коэффициентам, к произведению молярных концентраций остающихся неизрасходованными исходных веществ, также взятых в степенях, равных их стехиометрическим коэффициентам, является величиной постоянной.

Закон действующих масс (гомогенные системы)

СИСТЕМЫ)
$$aA + bB \Longrightarrow dD + eE$$

$$V_{np.} = K_{np}[c(A)]^a[c(B)]^B \qquad V_{o6p.} = K_{o6p.}[c(D)]^d[c(E)]^e$$

$$V_{np.} = V_{o6p.}$$

$$K_{np.} [A]^a[B]^B = K_{o6p.}[D]^d[E]^e$$

$$K_{np.} / K_{o6p.} = K_p$$

$$K_p (K_o) - \text{константа равновесия}$$

$$c(A) = [A] = \text{const}$$

$$c(B) = [B] = \text{const}$$

$$c(C) = [D] = \text{const}$$

$$c(C) = [C] = \text{const}$$

$$c(C) = [C] = \text{const}$$

Константы гетерогенных равновесий

$$Hg_{(x)} \stackrel{\longleftarrow}{\longrightarrow} Hg_{(r)}$$

$$K_{p} = [Hg_{(r)}]$$

$$CaCO_{3(\tau)} \stackrel{r}{\Longrightarrow} CaO_{(\tau)} + CO_{2(\tau)}$$
 $K_p = [CO_2]$

Константа равновесия

- При постоянной температуре является величиной постоянной
- Не зависит от концентраций участников реакции

$$K_p = K_{np.} / K_{o6p.}$$

- $K_D = 0$, если реакция не идет: A + B \neq
- $K_p = \infty$, если реакция идет до конца:

$$A + B = D + E$$

ПРИНЦИП ЛЕ ШАТЕЛЬЕ (1884):

Переход системы из одного состояния в другое называется **смещением химического** равновесия.

Направление этого смещения подчиняется **принципу Ле Шателье**.

ПРИНЦИП ЛЕ ШАТЕЛЬЕ

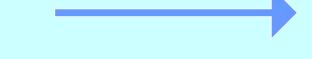
 Если на систему, находящуюся в состоянии химического равновесии, оказать какое-либо воздействие, то равновесие сместится в таком направлении, которое ослабляет оказанное воздействие.

Сдвиг химического равновесия

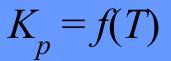
- Анри Луи Ле Шателье:
- Любое воздействие на систему, находящуюся в состоянии химического равновесия, вызывает в ней изменения, стремящиеся ослабить это воздействие

Влияние температуры

- Реакция эндотермическая
 - -Q, $\Delta H > 0$
- при повышении температуры


 при понижении температуры

- Реакция
 экзотермическая
 + Q, ΔH < 0
- при повышении температуры


при понижении температуры

Влияние температуры

• $CaCO_3 \implies CaO + CO_2 - Q (\Delta H > 0)$ при повышении температуры

• 2NO \implies N₂ + O₂ + Q (ΔH < 0) при повышении температуры

Влияние концентрации

$$K_c = \frac{[D]^d [E]^e}{[A]^a [B]^b}$$

При V = const:

- const: Введение реагента
 - Удаление реагента

- Введение продукта
- Удаление продукта

$$K_p = const$$

Влияние концентрации

• $2SO_2 + O_2 \rightarrow 2SO_3$ при увеличении концентрации SO_2 или O_2

Влияние давления

$$aA + bB \rightleftharpoons dD + eE$$

$$K_c = \frac{[D]^d [E]^e}{[A]^a [B]^b}$$

если d + e = a + b

 Δn (газ.) = 0 давление не влияет

Влияние давления

- $\Delta n(\text{газ.}) > 0$
- при повышении давления

при понижении давления

- Δn(газ.) < 0
- при повышении давления

при понижении давления

$$K_c = const$$

Влияние давления

$$\bullet$$
 N₂ + 3H₂ \Longrightarrow 2NH₃

$$\Delta n$$
(газ.) = 2 – 4 < 0 при повышении давления

Влияние катализатора

- не влияет на K_{ρ}
- не является реагентом или продуктом
- не смещает химическое равновесие
- ускоряет его достижение

П.3-5

Растворы

Дисперсные системы

Вещество А + вещество В

Неоднородная смесь – гетерогенная система

Раствор – гомогенная система, состоящая из двух или более компонентов, имеющая переменный состав

Смеси веществ

(гетерогенные и гомогенные системы) Смеси Размеры частиц

- Грубодисперсные системы (взвеси)
- Тонкодисперсные системы (коллоидные системы)
- Истинные растворы

- более 100 нм
- 1 − 100 HM

• менее 1 нм

Грубодисперсные системы

- Дисперсионная среда газообразная Дисперсная фаза:
 - твердая пыль, дым
 - жидкая облако, туман
- Дисперсионная среда жидкая Дисперсная фаза:
 - твердая суспензия, паста
 - жидкая эмульсия
 - газообразная пена, газированная вода
- Дисперсионная среда твердая Дисперсная фаза:
 - твердая горные породы, цветные стекла, композиты
 - жидкая твердые эмульсии
 - газообразная твердые пены

П.З. Понятие раствор. Типы растворов. Способы выражения состава (концентрации) растворов

Истинные растворы (в отличие от коллоидных) — однофазные системы переменного состава, содержащие атомы, ионы или молекулы и различные ассоциаты последних

Состав раствора: растворитель + растворенное вещество.

Параметры раствора: температура, давление, содержание растворенного вещества.

•Типы растворов по агрегатному состоянию:

Газообразные (воздух),

Твердые (сплавы)

Жидкие растворы (водные и неводные):

ж.-тв.
$$(H_2O - NaCl, CCl_4 - I_2)$$

ж.- ж.
$$(H_2O - H_2SO_4)$$

ж.- г.
$$(H_2O - CO_2)$$

Качественный состав растворов

- **Растворителем** считают то вещество, агрегатное состояние которого не изменяется при образовании раствора
- Растворенное вещество
- Если массы растворенного вещества $m_{\rm B}$ и растворителя $m_{\rm S}$ сопоставимы ($m_{\rm B} \approx m_{\rm S}$), то раствор считают концентрированным, если масса растворенного вещества $m_{\rm B}$ много меньше массы растворителя $m_{\rm S}$ ($m_{\rm B}$ << $m_{\rm S}$), то раствор считают разбавленным.

Растворимость

- Растворимость это способность вещества растворяться в данном растворителе при заданной температуре.
- Количественно растворимость измеряется как концентрация насыщенного раствора.

(коэфф. растворимости — масса вещества, растворяющегося при данных усл. в 100 г растворителя; табл. растворимости)

Растворимость:

более 10 г/ 100 мл H_2 О — вещество хорошо растворимо; менее 1г/ 100мл — малорастворимо; менее 0,01г/ 100мл практически нерастворимо

Количественный состав растворов

Соотношение количества растворенного вещества и растворителя количественно определяет концентрация раствора. В неорганической химии для количественного выражения состава растворов используют массовую долю, мольную долю, молярную, моляльную и эквивалентную концентрации (а также титр в аналитической химии).

Концентрация раствора

Молярная концентрация раствора

$$C_{M}(B) = n_{B} / V_{p}$$
; (моль/л).
Если в растворе серной кислоты $H_{2}SO_{4}$ молярная концентрация равна 1 моль/л, то это обозначается как **1M** раствор $H_{2}SO_{4}$ (одномолярный раствор серной кислоты).

- **Массовая доля** $w_{\rm B}$ растворенного вещества В $w_{\rm B} = m_{\rm B} / m_{\rho} = m_{\rm B} / (m_{\rm B} + m_{\rm воды})$. Безразмерная величина
- Эквивалентная концентрация (нормальность): $c_{H}(B) = n_{MOJL(ЭКВ)}(B) / V_{p}; [MOJL(ЭКВ.)/Л)].$

Концентрация раствора

• Моляльная концентрация растворенного вещества В (обозначение c_m) определяется как отношение количества вещества В (n_B , моль) к массе растворителя (m_s , кг):

$$c_m(B) = n_B / m_{s.}$$

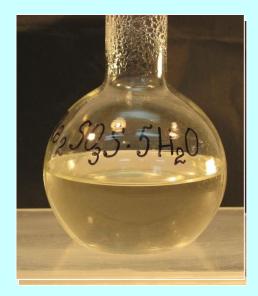
Единица измерения - моль/кг

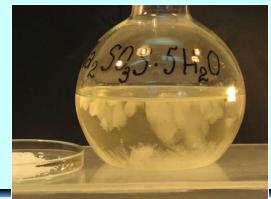
• Мольная (молярная)доля вещества в смеси (в том числе, в растворе) обозначается как x_B и равна отношению количества вещества В (n_B , моль) к суммарному количеству всех веществ в смеси (растворе) $\Sigma n_i = n_B + n_1 + n_2 + ... + n_i$, а именно: $x_B = n_B / \Sigma n_i$.

Мольная доля – безразмерная величина.

Ненасыщенный, насыщенный и пересыщенный типы растворов

 Ненасыщенным называют раствор, концентрация которого меньше, чем у насыщенного (при данной температуре) раствора.


Пересыщенные растворы



Пересыщенный раствор содержит растворенного вещества больше, чем требуется для насыщения при данной температуре.

Насыщенный раствор

- Насыщенным (при данной температуре) называют раствор, который находится в равновесии с растворяемым веществом.
- Устанавливается фазовое равновесие: растворяемое вещество
 раствор

Идеальные и реальные растворы

 При образовании идеальных растворов не меняются агрегатные состояния веществ, входящих в его состав, а объемный и энтальпийный эффект растворения равны нулю:

$$\Delta H_{\rm M} = 0$$
, $\Delta V_{\rm M} = 0$

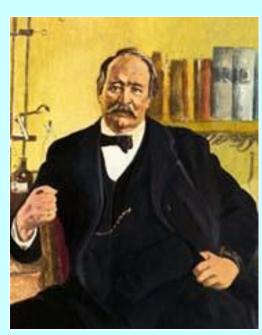
Реальные растворы

- При смешивании 1 л воды и 1 л этанола объем раствора при 25 °С равен не 2 л, а 1,93 л.
- Объемный эффект растворения $C_6H_6 + H$ -гексан $C_6H_{14}: \Delta V_{_{\rm M}} = 0,13\%$ $C_6H_6 + CCl_4: \Delta V_{_{\rm M}} = 0,52\%$

Идеальные и реальные растворы

- Свойства идеальных растворов представляют собой функции только количественного состава растворов, а не природы растворяемого вещества и растворителя.
- Близки по свойствам к идеальным бесконечно разбавленные растворы (для концентрации растворенного вещества меньшей чем 0,1 моль/л

П.4. Теория электролитической диссоциации. Степень и константа диссоциации. Сильные и слабые электролиты.


Теория электролитической диссоциации

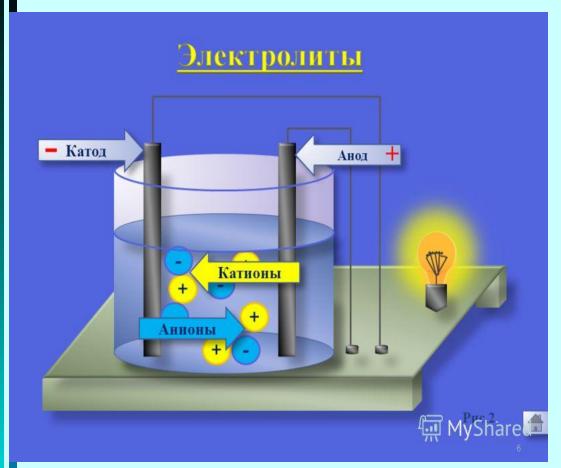
(1887 г.)

 В водном растворе (или расплаве) происходит распад растворенных веществ электролитов — на ионы:

$$MA(T, x, \Gamma) + x_1 \rightarrow$$

 $\rightarrow MA(s) + M^+(s) + A^-(s)$

MA(s) — сольватированная молекула растворенного вещества; M⁺(s) и A⁻(s) — сольватированные катион и анион.


Сванте-Август АРРЕНИУС (19.11 1859 - 2.X 1927), шведский физикохимик

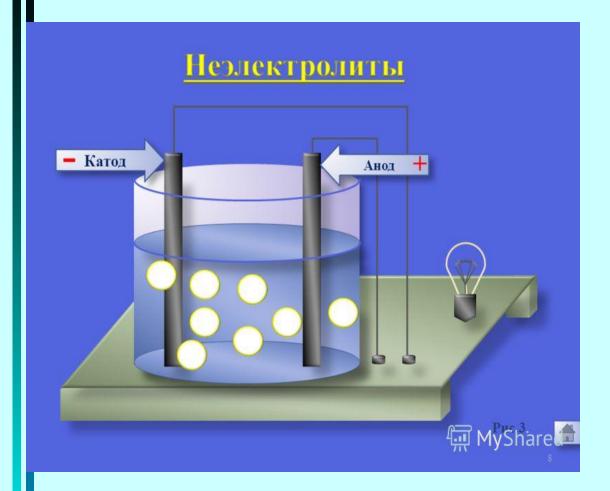
Теория электролитической диссоциации

- Процесс распада молекул электролитов на ионы в растворе или расплаве называется электролитической диссоциацией или ионизацией.
- В растворе или расплаве электролитов ионы движутся хаотически. При пропускании электрического тока – положительно заряженные ионы (катионы) движутся к катоду, а отрицательно заряженные ионы (анионы) – к аноду.
- Диссоциация процесс обратимый: одновременно идут два противоположных процесса диссоциация и ассоциация).
- Причина диссоциации сольватация (гидратация).

Электролиты и неэлектролиты

- Электролиты вещества, которые дают заметные изменения числа формульных единиц при переходе в раствор, а при появлении разности потенциалов проводят электрический ток.
- **Неэлектролиты** вещества, для которых не происходит изменения числа формульных единиц в растворе, при растворении меняются только силы межмолекулярного взаимодействия.

Электролиты


при растворении в воде или расплавлении *распадаются* (диссоциируют) *на ионы* — положительно *(катионы)* и отрицательно (*анионы)* заряженные частицы.

В растворах и расплавах электролиты проводят электрический ток.

Раствор электролита

- Число формульных единиц введенного в раствор вещества увеличивается
- В 1 л 0,01М раствора КСІ содержится 0,01 моль катионов К⁺ и анионов СІ⁻:

0,01 моль KCl +
$$H_2O \rightarrow 0$$
,01 моль $K^+(p) + 0$,01 моль $Cl^-(p)$

Неэлектролиты – это вещества, растворы или расплавы которых не проводят электрический ток

Раствор неэлектролита

- Число формульных единиц введенного в раствор вещества сохраняется
- В 1 л раствора 0,01М сахарозы содержится 0,01 моль гидратированных молекул $C_{12}H_{22}O_{11}$ (В) : 0,01 моль В + $H_2O \rightarrow 0$,01 В (р)

Сильные электролиты

$$MA \rightarrow M^{+}(p) + A^{-}(p)$$

Пример: $NaCl_{(p)} = Na^{+}_{(p)} + Cl^{-}_{(p)}$

[MA] = 0, [M⁺] = [A⁻] =
$$c_0$$

Степень диссоциации

$$\alpha = \frac{n_{oucc.}(MA)}{n_0(MA)} = \frac{n(M^+)}{n_0(MA)} = \frac{[M^+]}{c_0} = 1$$

Слабые электролиты

• $M_X A_y(p) \rightleftharpoons x M^{a+}(p) + y A^{b-}(p)$

Пример:

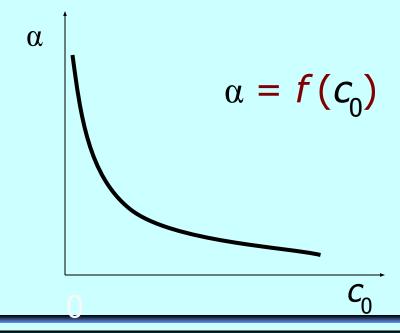
 $HgCl_{2} \square HgCl^{+} + Cl^{-} (a = 2-5\%)$:

Это соединение имеет молекулярную структуру, является бинарным соединением

Константа диссоциации $K_{D}(K_{C})$:

$$K_{D} = \frac{[M^{a+}]^{x} [A^{b-}]^{y}}{[M_{x} A_{y}]}$$

Константа, степень диссоциации и концентрация слабого электролита


	MA	M ⁺	A ⁻
В начальный момент времени (τ_0)	C ₀	0	0
К моменту достижения равновесия ($\tau_{\text{равн.}}$)	$(1-\alpha)c_0$	α C ₀	α C ₀

$$K_{\rm C} = [{\rm M}^+] [{\rm A}^-] / [{\rm MA}] = (a c_0 \cdot a c_0) / (1-a)c_0$$

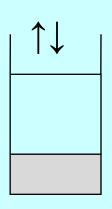
 $K_{\rm C} = a^2 c_0 / (1-a)$

Закон разбавления Оствальда

$$K_{\rm C} = \alpha^2 c_0$$

$$\alpha = \sqrt{\frac{K_D}{c_0}}$$

Вильгельм-Фридрих **ОСТВАЛЬД** (2.IX.1853 - 4.IV.1932), немецкий физикохимик


Факторы, от которых зависит сила электролита

- Прочность связи (М⁺

 [−]

 [−]
- Прочность образующихся сольватов
- Концентрация раствора
- Температура
- Природа растворителя (его диэлектрическая проницаемость)

Гетерогенные ионные равновесия

$$MA_{(T)}$$
 \rightleftharpoons $M^+ + A^-$ Для малорастворимых сильных электролитов: $K_c = [M^+][A^-] = \Pi P(MA)$ (произведение растворимости)

В общем виде:

$$M_x A_{y(T)} \rightleftarrows x M^{a+} + y A^{b-}$$

Тогда $\Pi P = [M^{a+}]^x [A^{b-}]^y$

$$\Pi P = const \ \Pi p u \ T = const$$

 $\Pi P = f(T)$

Растворимость (L), моль/л

$$M_X A_{y(T)} \rightleftharpoons x M^{a+} + y A^{b-}$$

$$[M^{a+}] = x L; [A^{b-}] = y L$$

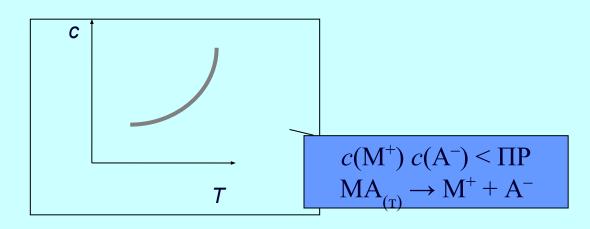
 $\Pi P(M_x A_y) = (x L)^x (y L)^y = x^x y^y L^{x+y}$

$$L = \sqrt[x+y]{\frac{\Pi P(M_x A_y)}{x^x y^y}}$$

Задача

Рассчитать растворимость сульфата серебра, если $\Pi P(Ag\ SO_{4}) = 1,2^{-1}10^{-5}$

- $Ag_2SO_{4(T)} \square 2Ag^+ + SO_4^{2-}$ $L \qquad 2L \qquad L$
- $\Pi P = [Ag^+]^2 [SO_4^{2-}] = (2L)^2 L = 4L^3$


$$L = \sqrt[3]{\frac{\Pi P}{4}} = 1.3 \cdot 10^{-2} \, \text{моль} / \, \pi$$

Условия осаждения и растворения осадков

$$MA_{(T)} \rightleftharpoons M^+ + A^-$$

$$c(M^{+}) c(A^{-}) = [M^{+}] [A^{-}] = \Pi P$$

$$c(M^+)$$
 $c(A^-) > \Pi P$
 $M^+ + A^- \rightarrow MA_{(T)}$

Для малорастворимого сильного электролита $M_x A_y$: <u>условие растворения осадка</u>: $[M^{a+}]^x [A^{b-}]^y < \Pi P$

<u>условие выпадения осадка</u>: $[M^{a+}]^x [A^{b-}]^y > \Pi P$

Разбавленные растворы слабых электролитов

1.Понижение давления пара растворителя над раствором (закон Рауля):

 $p_{i} = N_{i} p_{o}$; N_{i} — мольная доля растворителя.

2.Понижение температуры кристаллизации раствора:

 $\Delta t_{\text{крист.}} = K \, m; \, m - моляльная концентрация раство$ $ренного вещества; <math>K - \kappa$ криоскопическая постоянная р-ля.

3. Повышение температуры кипения раствора:

 $\Delta t_{_{\it KMR}} = E \, m; \, E -$ эбулиоскопическая постоянная p-ля.

4.Осмотическое давление (Р, кПа):

 $P = C_M RT$, R - универсальная газовая постоянная;T- температура, К. П.5. Диссоциация воды, ионное произведение воды. Водородный показатель. Шкала рН растворов.

Актуальность

- Растворы очень широко распространены в природе.
- Растворами являются все ткани живого организма.
- Питьевая вода, вода рек, морей и океанов это тоже растворы.
- Свойства растворов определяются природой растворенных веществ, их составом и концентрацией.

Ионное произведение воды

•
$$H_2O + H_2O = H_3O^+ + OH^ H_3O^+ -$$
 гидроксоний
 $H_2O = H^+ + OH^ K_c(K_p) = [H^+][OH^-] / [H_2O]$
 $[H_2O] = 55, 55$ моль/л; $[H^+][OH^-] = K_p / 55, 55 =$ Const При стандартной температуре 298 К (25 °C): в чистой воде:

- \bullet [H⁺] = [OH⁻] = 10^{-7} моль/л (определено экспериментально)
- ${}^{\bullet}K_{\rm B}(K_{\rm W})=[{\rm H}^+][{\rm OH}^-]=1\cdot 10^{-14}$ (ионное произведение воды произведение концентраций ионов гидроксония и гидроксид-иона).

Водородный показатель (рН)

Отрицательный десятичный логарифм концентрации ионов водорода

$$pH = -lg[H^+] = -lg10^{-7} = 7$$

Гидроксильный показатель (рОН)

$$pOH = -lg[OH^{-}] = -lg10^{-7} = 7$$

 $pH + pOH = 14$
 $pH = 14 - pOH$

Водородный показатель (рН)

В чистой воде при 25° C pH = pOH = 7, среда **нейтральная**

В разбавленных водных растворах:

При $[H^+] > 1 \cdot 10^{-7}$, pH < 7, среда **кислая** Например, $[H^+] = 1 \cdot 10^{-3}$, pH = $-lg[H^+] = 3$;

при $[OH^-] > 1.10^{-7}$, pOH < 7, среда **щелочная**

Например, $[OH^{-}] = 1.10^{-3}$, $pOH = -lg[OH^{-}] = 3$; pH = 14.3 = 11

Шкала рН

- При [H⁺] = 0,1 моль/л
 (например, в 0,1 М растворе HCl)
 рН = 1 (нижний предел);
- При [OH⁻] = 0,1 моль/л
 (например, в 0,1 М растворе КОН)
 рН = 13 (верхний предел).

Реально рН измеряется в интервале 1-13. (универсальная индикаторная бумага; потенциометр- рН — метр)

Кислотно-основные индикаторы

Вещества, которые обратимо изменяют свою окраску в зависимости от рН раствора.

Это слабые органические кислоты и основания, у которых молекулярная и ионная формы отличаются по цвету.

- HInd \square H⁺ + Ind⁻ $K_{D} = [H^{+}] [Ind^{-}] / [HInd]$
- IndOH \square Ind⁺+OH⁻ $K_p = [Ind^+] [OH^-] / [IndOH]$

У каждого индикатора – своя точка перехода (pH изменения окраски)

Определение типа среды с помощью индикаторов

Индикатор	Окраска индикатора в среде				
индикатор	нейтральной кислотной		щелочной		
Лакмус	фиолетовая	красная	синяя		
Метиловый оранжевый		розовая	желтая		
Фенол- фталеин	бесцветная	бесцветная	малиновая		

Кислотно-основные индикаторы

Индикаторы	Кислоты	Основания	
Лакмус красный	Не меняется	Синий	
Лакмус синий	Красный	Не меняется	
Универсальный индикатор (бумага)	Не меняется	Синий	
Универсальный индикатор (раствор)	Оранжевый	Синий	
Метилоранж	Розовый	Желтый	
Фенолфталеин	Бесцветный	Лиловый	

Значение рН

рН биологических жидкостей

колеблется в зоне 1÷9

- √pH желудочного сока 1;
- √pH кишечного сока 9
- √рН крови 7,36 (7,25 ÷7,44)
- \sqrt{pH}_{MOVU} 4,8 ÷7,5 (из крови сбрасываются лишние кислоты или основания)
- √рН пищевых продуктов 3÷ 6

 (в большинстве случаев; только молоко щелочнее этой среды).

П.6. Гидролиз солей

Что такое гидролиз?

■Гидролиз

(от греческого hydro – вода;

lysis – разложение)

Гидролиз

- Гидролизом называется взаимодействие вещества с водой, при котором составные части вещества соединяются с составными частями воды.
- Гидролизу подвержены соединения различных классов.

 Гидролизом соли называется взаимодействие ионов соли с водой, в результате которого образуются слабые электролиты.

Гидролиз солей

Соли

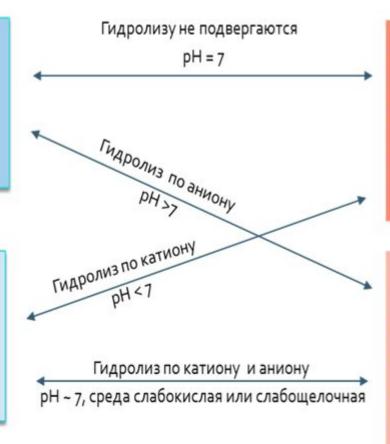
Сильные основания:

NaOH

KOH

Sr(OH)₂

Ba(OH)₂


Слабые основания:

NH₄OH

AI(OH)₃

 $Zn(OH)_2$

(все нерастворимые)

Сильные кислоты:

HCI,

HBr

HI

HNO₃,

H₂SO₄

Слабые кислоты:

HF,

H₂S,

H₂CO₃,

H₂SiO₃

CH₃COOH

Типы солей

Гидролиз солей

Nº	Соли, образованные		Тип гидролиза	Реакция среды	
1.	Сильным основанием	слабой кислотой	гидролиз по аниону	Щелочная (pH > 7)	
2.	Слабым основанием	сильной кислотой	гидролиз по катиону	кислотная (pH < 7)	
3.	Сильным основанием	сильная кислотой	не подверга- ются гидро- лизу	нейтральная среда (рН = 7)	
4.	Слабым основанием	слабой кислотой	гидролиз по катиону и аниону	?	

1. Гидролиз солей, образованных сильным основанием и слабой кислотой

$$KNO_2 + H_2O \square KOH + HNO_2$$

 $KNO_2 = K^+ + NO_2^-$
 $H_2O \square H^+ + OH^-$

Полное ионное уравнение гидролиза:

$$K^{+} + NO_{2}^{-} + H_{2}O \square K^{+} + OH^{-} + HNO_{2}$$

Сокращенное ионное уравнение:

$$NO_2^- + H_2O \square OH^- + HNO_2$$
; pH > 7,

Обратимый процесс, среда щелочная, гидролиз по аниону.

Аналогично: NaCN, NaF, Ba₂S и др.

•При гидролиз солей, образованных сильными основаниями и слабыми многоосновными кислотами (например, BaCO₃) гидролиз идет ступенчато; образуются кислые соли (примеры - на доске)

2. Гидролиз солей, образованных слабым основанием и сильной кислотой

•
$$NH_4CI + H_2O \square NH_4OH + HCI$$
;
 $NH_4CI = NH_4^+ + CI^-$
 $H_2O \square H^+ + OH^-$

Полное ионное уравнение гидролиза:

$$NH_4^+ + Cl^- + H_2O \square NH_4OH + H^+ + Cl^-$$
 Сокращенное ионное уравнение:

$$NH_4^+ + H_2^- O \square NH_4^- O H + Cl^-; pH < 7,$$

Обратимый процесс, среда кислая, гидролиз по катиону.

- Аналогично NH_4NO_3 , $(NH_4)_2SO_4$ и др.
- При гидролиз солей, образованных слабыми многокислотными основаниями, (например, $CuSO_4$) гидролиз идет ступенчато; образуются основные соли (примеры на доске).

3. Гидролиз солей, образованных слабым основанием и слабой кислотой

•
$$NH_4NO_2 + H_2O \square NH_4OH + HNO_2$$

 $NH_4NO_2 = NH_4^+ + NO_2^-$
 $H_2O \square H^+ + OH^-$

Полное ионное уравнение гидролиза:

$$NH_4^+ + NO_2^- + H_2O \square NH_4OH + HNO_2$$

Сокращенное ионное уравнение (нет)

Обратимый процесс, гидролиз по катиону и аниону; среда — слабокислая или слабощелочная в зависимости и от K_a и K_b (написать на доске примеры)

Необратимый совместный гидролиз

•
$$2AICI_3 + 3Na_2S + 6H_2O =$$

= $2AI(OH)_3 \downarrow + 3H_2S \uparrow + 6NaCI$
 $2AI^{3+} + 3S^{2-} + 6H_2O = 2AI(OH)_3 \downarrow + 3H_2S \uparrow$

•
$$2KCr(SO_4)_2 + 3Na_2CO_3 + 3H_2O =$$

= $2Cr(OH)_3 \downarrow + 3CO_2 \uparrow + K_2SO_4 + Na_2SO_4$
 $2Cr^{3+} + 3CO_3^{2-} + 3H_2O = 2Cr(OH)_3 \downarrow + 3CO_2 \uparrow$

Определение рН водных растворов

Задание. Определите реакцию среды водных растворов солей.

Таблица № 2

Nº	I ряд	II ряд	III ряд	
1.	Li ₂ SO ₄ H	NaNO ₂ Щ	KCl H	
2.	CuSO ₄ K	FeCl ₃ K	Na ₂ SO ₃ Щ	
3.	К ₃ РО ₄ Щ	KI H	KMnO ₄ H	
4.	NaClO ₄ H	LiNO ₃	NH ₄ NO ₃ K	
5.	Na ₂ SiO ₃ Щ	K ₂ S Щ	NaNO ₃ H	

Н-нейтральная; К – кислотная; Щ - щелочная

П.7. Реакции ионного обмена, условия их протекания. Порядок составления ионных уравнений.

Реакции, протекающие между ионами, называются ионными реакциями (м.б. как обменные, так и окислительно-восстановительные).

Молекулярные, полные ионные и сокращенные ионные уравнения

$$K_2SO_4 + BaCl_2 = BaSO_4 \downarrow + 2KCl$$
 (молекулярное ур-ие) Полное ионное уравнение :

$$2K^{+} + SO_{4}^{2-} + Ba^{2+} + 2CI^{-} = BaSO_{4} \downarrow + 2K^{+} + 2CI^{-}$$

Сокращенное ионное уравнение:

$$Ba^{2+} + SO_4^{2-} = BaSO_4 \downarrow$$

- В виде молекул записываются: формулы простых веществ, оксидов металлов и неметаллов, воды, слабых кислот, слабых оснований, нерастворимых солей, амфотерных гидроксидов; а также газообразных веществ.
- В виде ионов записываются формулы сильных кислот, сильных оснований, растворимых в воде солей.
- Реакции обмена между сильными электролитами в растворах протекают до конца, или практически необратимы, если образуются малорастворимые вещества, малодиссоциирующие вещества (слабые электролиты, в том числе, вода) или газообразные (или летучие) вещества.
- Обратимые реакции если среди исходных веществ имеются слабые электролиты или малорастворимые вещества (а также реакции гидролиза).

П.8. Сущность окислительно-восстановительных реакций и условие их протекания. Степени окисления атомов и порядок их определения. Составление уравнений окислительно-восстановительных реакции на основе метода электронного баланса.

Окислительно-восстановительные реакции (ОВР)

Химические реакции

степени

окисления

(ооменные)

С изменением степени окиспения (ОВР)

Степень окисления

- формальный (условный) заряд атома в соединении, вычисленный, исходя из предположения, что соединение состоит из ионов.
- Степень окисления: Cl⁺⁷, Mo⁺⁶, F⁻¹
- Заряд иона в растворе: Ва²⁺, Na⁺, S²⁻ (обозн. арабскими цифрами)
- Степень окисления:

```
простых веществ равна 0; атома водорода и щелочных металлов в соединениях равна +1 (исключение для H гидриды металлов (-1); атома кислорода в соединениях -2 (исключение -H_2O_2 и F_2O); атомы шелочноземельных металлов +2 (за исключением Hg); Al и B +3; атома F в соединениях (-1).
```

$$SO_3^{2-} \neq SO_4^{2-}$$

Степень окисления

- не совпадает с истинным зарядом атома в соединении
 H^{+0,17}Cl^{-0,17}
- не совпадает с валентностью (числом ковалентных связей, обозн. римскими цифрами) $H^{\rm I}$ — $O^{\rm II}$ — $O^{\rm II}$ — $H^{\rm I}$

Типичные окислители и восстановители

- Окислители:
 - Простые вещества содержащие элементы с высокой электроотрицательностью (F₂, O₂, Cl₂ и т. д.)
 - Сложные вещества содержащие элементы в высоких степенях окисления ($KMnO_4$, $K_2Cr_2O_7$, HNO_3 и т.д.)

- Восстановители:
 - Простые вещества содержащие элементы с низкой электроотрицательностью (металлы, С, Н₂ и т.д.)
 - Сложные вещества содержащие элементы в низких степенях окисления (NH₃, H₂S, AsH₃ и т.д.)

Изменение степени окисления

перераспределение электронной плотности ("передача электронов")(НСЮ - хлорноватистая кислота – соли гипохлориты)

$$HC^{\dagger 0} + H_2S^2 = HC^1 + S^0 + H_2O$$

Окислитель (Ок)

Cl⁺¹, HClO

Понижает степень окисления

Принимает электроны

Восстанавливается

$$C1^{+1} + 2e^{-} = C1^{-1}$$

Восстановитель (Вс)

 S^{-2} , H_2S

Повышает степень

окисления

Отдает электроны

Окисляется

$$S^{-2} - 2e^{-} = S^{0}$$

Типы ОВР

 Внутримолекулярные реакции (окислитель и восстановитель - в одной и той же молекуле)

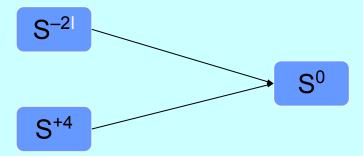
$$2Hg^{+2}O^{-2} = O_2^{0} + 2Hg^{0}$$

Дисмутация (диспропорционирование)

$$3Au^{+1}F = Au^{+3}F_3 + 2Au^0$$

$$Au^{+1}$$

$$Au^{+1}$$


Типы ОВР

Межмолекулярные реакции (окислитель и восстановитель - в разных молекулах)

$$2Mg^0 + O_2^{\ 0} = 2Mg^{+2}O^{-2}$$

$$PbS^{-2} + 4H_2O_2^{-1} = PbS^{+6}O_4 + 4H_2O^{-2}$$

$$2H_2S^{-2} + S^{+4}O_2 = 3S^0 + 2H_2O$$

- 1. Записывают формулы реагентов и продуктов, находят элементы, которые понижают и повышают степени окисления.
- 2. Записывают атомы с указанием изменяющихся степеней окисления.
- З. Составляют уравнения полуреакций восстановления и окисления, соблюдая для каждой из них законы сохранения числа атомов и заряда.
- 4. Находят наименьшее общее кратное (н.о.к.) числа переданных в каждой полуреакции электронов и подбирают дополнительные множители для уравнений полуреакций так, чтобы число принятых электронов стало равным числу отданных электронов.
- 5. Проставляют полученные коэффициенты в схему реакции
- 6. Уравнивают числа остальных атомов.

- $MnCO_3 + KClO_3 \rightarrow MnO_2 + KCl + CO_2$
- $Mn^{+2} \rightarrow Mn^{+4}$
- $Cl^{+5} \rightarrow Cl^{-1}$
- $Mn^{+2} 2e^{-} = Mn^{+4}$
- $C1^{+5} + 6e^{-} = C1^{-1}$
- н.о.к. 6
- $Mn^{+2} 2e^- = Mn^{+4} | 3$
- $Cl^{+5} + 6e^{-} = Cl^{-1}$ | 1

- $3MnCO_3 + KClO_3 \rightarrow 3MnO_2 + KCl + CO_2$
- $\bullet \quad 3MnCO_3 + KClO_3 = 3MnO_2 + KCl + 3CO_2$

$$FeCl_3 + KJ \rightarrow FeCl_2 + KCl + J_2$$
• $Fe^{+3} + 1e^{-} = Fe^{+2}$ 2 пр. восстановления окислитель н.о.к. 2
• $2J^{-1} - 2e^{-} = J_2^{\ 0}$ 1 пр. окисления восстановитель

$$2\underline{FeCl}_3 + 2\underline{KJ} \rightarrow 2\underline{FeCl}_2 + 2\underline{KCl} + \underline{J}_2$$

$$Na_2SO_3 + KMnO_4 + H_2SO_4 \rightarrow Na_2SO_4 + MnSO_4 + K_2SO_4 + H_2O_4$$

•
$$S^{+4} - 2e^{-} = S^{+6}$$

восстановитель

н.о.к. 10

• $Mn^{+7} + 5e^- = Mn^{+2}$

окислитель

5 пр. окисления

2 пр. восстановления

$$\frac{5Na_{2}SO_{3} + 2KMnO_{4} + 3H_{2}SO_{4} \rightarrow 5Na_{2}SO_{4} + 2MnSO_{4}}{+ K_{2}SO_{4} + 3H_{2}O}$$

$$Na_2SO_3 + KMnO_4 + H_2O \rightarrow Na_2SO_4 + MnO_2 + KOH$$

$$S^{+4} - 2e^{-} = S^{+6}$$

восстановитель

н.о.к. 6

• $Mn^{+7} + 3e^{-} = Mn^{+4}$

окислитель

3 пр. окисления

2 пр. восстановления

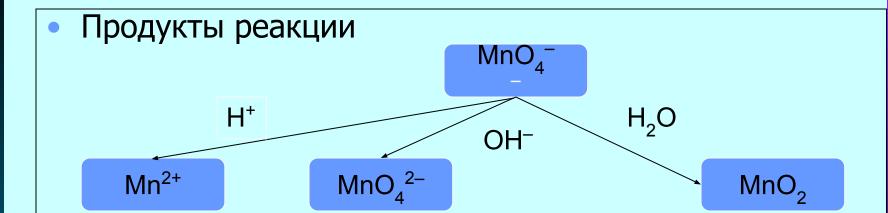
$$3Na_2SO_3 + 2KMnO_4 + H_2O \rightarrow 3Na_2SO_4 + 2MnO_2 + 2KOH$$

$$Na_2SO_3 + KMnO_4 + NaOH \rightarrow Na_2SO_4 + K_2MnO_4 + H_2O_3$$

$$S^{+4} - 2e^{-} = S^{+6}$$

восстановитель

•
$$Mn^{+7} + 1e^- = Mn^{+6}$$


окислитель

1 пр. окисления

2 пр. восстановления

$$\frac{Na_{2}SO_{3}}{+Na_{2}MnO_{4}} + 2NaOH \rightarrow \frac{Na_{2}SO_{4}}{+Na_{2}MnO_{4}} + \frac{Na_{2}SO_{4}}{+Na_{3}MnO_{4}} + \frac{Na_{2}SO_{4}}{+Na_{3}MnO_{4}$$

Влияние среды

$$5\mathrm{Na_2SO_3} + 2\mathrm{KMnO_4} + 3\mathrm{H_2SO_4} \\ \rightarrow 2\mathrm{MnSO_4} + 5\mathrm{Na_2SO_4} + \mathrm{K_2SO_4} + 3\mathrm{H_2O}$$

$$3\text{Na}_2\text{SO}_3 + 2\text{ KMnO}_4 + \text{H}_2\text{O} \rightarrow 2\text{MnO}_2 + 2\text{Na}_2\text{SO}_4 + 2\text{KOH}$$

$$\mathrm{Na_2SO_3} + 2\mathrm{KMnO_4} + 2\mathrm{KOH} \longrightarrow + 2\mathrm{K_2MnO_4} + \mathrm{Na_2SO_4} + \mathrm{H_2O}$$

(СМ. ЛАБОРАТОРНУЮ РАБОТУ)

$$FeS + O_2 \rightarrow Fe_2O_3 + SO_2$$

•
$$Fe^{+2} - 1e^{-} = Fe^{+3}$$

$$-5^{-2} - 6e^{-} = 5^{+4}$$

4 пр. окисления

восстановители

$$O_2 + 4e^- = 20^{-2}$$

+4e⁻

7 пр. восстановления

окислитель

$$4FeS + 7O_2 = 2Fe_2O_3 + 4SO_2$$

10

Подбор коэффициентов в уравнениях ОВР. Метод электронно-ионных полуреакций

- 1. Записывают формулы реагентов и продуктов, находят окислитель, восстановитель и среду.
- 2. Записывают формулы окислителя и восстановителя и соответствующие продукты реакции в ионном виде.
- З. Составляют ионные уравнения полуреакций восстановления и окисления, соблюдая для каждой из них законы сохранения числа атомов и заряда.
- 4. Находят наименьшее общее кратное (н.о. к.) числа переданных в каждой полуреакции электронов и подбирают дополнительные множители для уравнений полуреакций так, чтобы число принятых электронов стало равным числу отданных электронов.
- 5. Составляют ионное уравнение реакции
- б. Уравнивают числа остальных атомов, участвующих в реакции, и получают уравнение реакции с подобранными коэффициентами.

$$K_2Cr_2O_7 + H_2SO_4 + H_2S \rightarrow S + Cr_2(SO_4)_3 \dots$$

Ок Среда Bc

•
$$Cr_2O_7^{2-} + H^+ + H_2S \rightarrow S + Cr^{3+} + H_2O$$

•
$$\operatorname{Cr}_{2}^{2}\operatorname{O}_{7}^{'2-}(\operatorname{O}\Phi) \to \operatorname{Cr}^{3+}(\operatorname{B}\Phi)$$

•
$$H_2S(B\phi) \rightarrow S(O\phi)$$

•
$$Cr_2O_7^{2-} + 8H^+ + 6e^- = 2Cr^{3+} + 7H_2O$$

•
$$H_2S - 2e^- = S + 2H^+$$

•
$$Cr_2O_7^{2-} + 8H^+ + 6e^- = 2Cr^{3+} + 7H_2O \mid 1$$

$$H_2S - 2e^- = S + 2H^+$$

•
$$Cr_2O_7^{2-} + 8H^+ + 3H_2S = 3S + 2Cr^{3+} + 7H_2O$$

$$K_2Cr_2O_7 + 4H_2SO_4 + 3H_2S = 3S + Cr_2(SO_4)_3 + 7H_2O + K_2SO_4$$

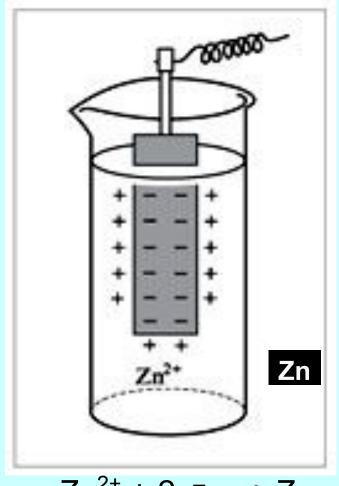
Подбор числа атомов водорода и кислорода

- Кислотная среда
 - $[H^{I}] = H^{+}$
 - $[O^{II}] + 2H^+ = H_2O$

- Щелочная среда
 - $[H^{I}] + OH^{-} = H_{2}O$
 - $[O^{II}] + H_2O = 2OH^-$

Пример
$$[Cr(OH)_6]^{3-} \rightarrow CrO_4^{2-}$$

Щелочная среда
$$6[H^I] + 6OH^- = 6H_2O$$
 $2[O^I] + 2H_2O = 4OH^-$

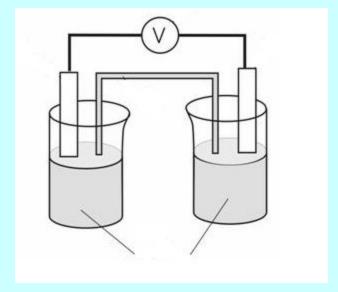

$$[Cr(OH)_6]^{3-} + 2OH^- - 3e^- = CrO_4^{2-} + 4H_2O$$

Направление ОВР

- $Br^- + PbO_2 + H^+ \rightarrow Br_2 + Pb^{2+} + H_2O$
- $Br^- + Fe^{3+} \neq Br_2 + Fe^{2+}$
- $Br_2 + Fe^{2+} \rightarrow Br^- + Fe^{3+}$
- Количественная мера окислительной способности Ок (и восстановительной способности Вс) – электродный потенциал ф (греческая буква "фи")

Электродный потенциал ф

электрический потенциал электрода, на котором одновременно и с равными скоростями протекают полуреакция восстановления окисленной формы (Оф) и обратная ей полуреакция окисления соответствующей восстановленной формы **(Вф)**


Zn²⁺ + 2e⁻ ⇄ Zr

Разность потенциалов Дф

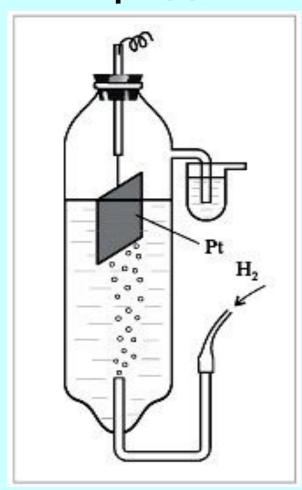
•
$$O\phi(1) + B\phi(2) \implies B\phi(1) + O\phi(2)$$

$$- \operatorname{O} \phi(1) + n_1 e^- \implies \operatorname{B} \phi(1)$$

$$- B\phi(2) - n_1 e^- \implies O\phi(2)$$

Οφ(1)/Bφ(1) Οφ(2)/Bφ(2) ϕ_1 ϕ_2

(-) Fe | Fe⁺² | Cu⁺² | Cu (+)


(гальванический элемент)

$$\Delta \varphi = \varphi_1 - \varphi_2$$

$$\Delta \phi > 0$$
 \rightarrow

$$\Delta \phi < 0 \leftarrow$$

Стандартный водородный электрод

Платиновый электрод, покрытый платиновым порошком, в водном растворе кислоты с $c(H^+) = 1$ моль/л и омываемый газообразным водородом (p = 1 атм) при 298 К

$$\phi^{\circ}(H^{+}/H_{2}) = 0 B (условно!)$$

10

Стандартный потенциал полуреакции восстановления ф^о

- $O\phi + H_2 \implies B\phi + 2H^+$
- $\Delta \phi^{\circ} = \overline{\phi^{\circ}}(O\phi/B\phi) \phi^{\circ}(H^{+}/H_{2}) = \phi^{\circ}(O\phi/B\phi)$
- Данные приведены в справочниках
- Стандартные условия:
 - $-c_{j}=1$ моль/л (для каждого участника реакции в растворе)
 - $-p_{j}$ = 1 атм (для каждого газообразного участника реакции)
 - -T = 298 К (обычно) ст.у. ≠ н.у. (0°С, 1 атм)

Сравнение фо

Электрохимический ряд напряжений

ЭХРН		Li	Zn	Pb	Н	Cu	Au
	φ°, Β (Μ ⁿ⁺ /Μ)	-3,1	-0,8	-0,1	0	+0,3	+1,4

Сила Ок и Вс

Оф	Вф	φ°, B	4	
PbO ₂	Pb ²⁺	1,5	Сила	ила Вс
Br ₂	Br ⁻	1,1	Š	O Z

Критерий протекания ОВР в стандартных условиях

ОВР протекает в прямом направлении в стандартных условиях, если
 Δφ° = φ°(Ок) – φ°(Вс) > 0 В

$$\Delta \phi^{\circ} = \phi^{\circ}(O\kappa) - \phi^{\circ}(Bc) < 0 B$$

Уравнение Нернста

• На практике стандартные условия не используются $O\phi + ne^- = B\phi$

$$\varphi(\mathrm{O}\phi/\mathrm{B}\phi) = \varphi^{0}(\mathrm{O}\phi/\mathrm{B}\phi) + \frac{RT}{nF}\ln\frac{c(\mathrm{O}\phi)}{c(\mathrm{B}\phi)}$$

• $MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$

$$\varphi(\text{MnO}_{4}^{2}, \text{H}^{+}/\text{Mn}^{2+}) = \varphi^{0}(\text{MnO}_{4}^{2}, \text{H}^{+}/\text{Mn}^{2+}) + \frac{RT}{nF} \ln \frac{[\text{MnO}_{4}^{2}][\text{H}^{+}]^{8}}{[\text{Mn}^{2+}]}$$

- Во время протекания реакции ф измерить нельзя, но можно вычислить
- По мере протекания реакции ф(Ок) ↓, а ф(Вс) ↑
- Когда $\phi(O\kappa) = \phi(Bc)$, реакция прекращается

Критерий полноты протекания ОВР (в реальных условиях)

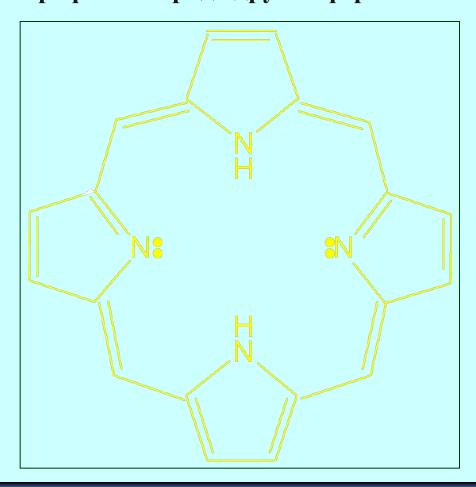
- ОВР протекает в прямом направлении до конца при любых начальных условиях, если Δφ° > 0,4 В
- ОВР протекает в обратном направлении до конца при любых начальных условиях, если Δφ° < -0,4 В

Пример

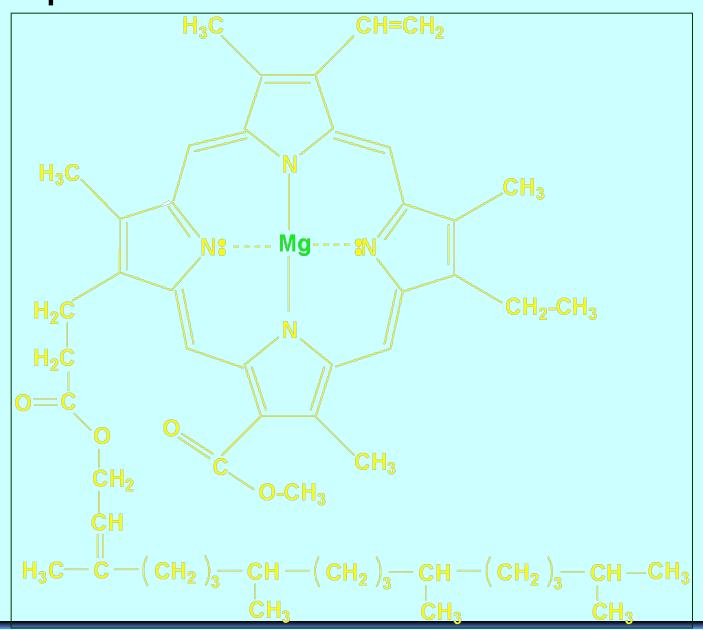
Какие галогениды могут быть окислены катионом Fe³⁺ в стандартных условиях?

$$2\Gamma^{-} + 2Fe^{3+} = \Gamma_{2} + 2Fe^{2+}$$

Oφ/Bφ φ°, B
$$\Delta$$
φ°, B cT.y. Fe³⁺/Fe²⁺ 0,77
 F_2/F^- 2,86 $-2,09 \leftarrow$ Cl₂/Cl⁻ 1,36 $-0,59 \leftarrow$ Br₂/Br⁻ 1,07 $-0,30 \leftarrow$ I₃/I⁻ 0,54 $+0,23 \rightarrow$

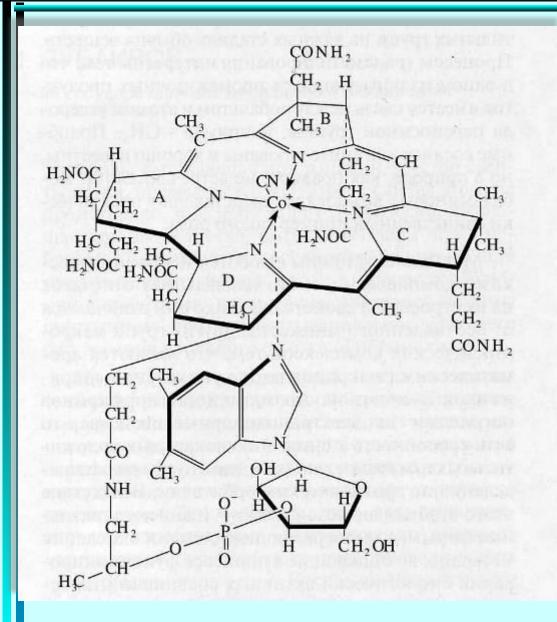

Что же такое комплексы?

• Комплексные соединения — вещества, существующие как в кристаллическом состоянии, так и в растворе, особенностью которых является наличие центрального атома (акцептора электронов), окруженного лигандами (донорами электронов).


В растворе лиганды способны ступенчато и обратимо отщепляться от центрального атома по гетеролитическому типу.

Порфирин

Хелатирующий лиганд, способный к комплексообразованию даже со щелочными металлами. Входит в состав небелковой части молекулы гемоглобина, хлорофилла и ряда других ферментов.



Хлорофилл

Гемоглобин

/

1964 г. – Дороти Ходжкин

Дополнительный слайд:

Основные соотношения

Эквивалент — условная (реально не существующая) частица, в z раз меньшая, чем формульная единица z — эквивалентное число (≥ 1)

- Формульная единица
 - *п,* моль
 - М, г/моль
 - $-V_{\rm M}$, л/моль
 - *с,* моль/л (M)

- Эквивалент
 - $n_{eq} = z n$, моль-экв
 - $M_{eq} = M / Z$, г/моль-экв
 - $V_{eq} = V_{\rm M} / z$, л/моль-экв
 - *c_{eq}* = *z с*, моль-экв/л (н., N)

Закон эквивалентов

Для реакции aA + bB + ... = dD + eE + ...

$$n_{eq}(A) = n_{eq}(B) = n_{eq}(D) = n_{eq}(E) = ...$$

Вопросы к экзамену

по общей и неорганической химии

- 1. Понятия: материя, вещество. Предмет науки химия
- 2. Качественная и количественная характеристика состава атомов
- 3. Строение электронных оболочек атомов. Квантовые числа. Энергетические уровни и подуровни, атомные электронные орбитали.
- 4. Правила составления электронных формул и схем строения электронных оболочек атомов (принцип минимальной энергии, правила Клечковского, Хунда, принцип Паули)
- 5. Сущность периодического закона. Причина периодической повторяемости химических свойств и количественных характеристик атомов с увеличение зарядов их ядер
- 6. Строение периодической системы химических элементов Д.И.Менделеева. Характер и причины изменения металлических и неметаллических свойств, радиусов, энергии ионизации, энергии сродства к электрону, электроотрицательности атомов в периодах и группах периодической системы
- 7. Основные типы химической связи (ковалентная, ионная, металлическая), механизм их образования и свойства
- 8. Классы сложных неорганических соединений. Состав, номенклатура, химические свойства и реакции оксидов, кислот, оснований и солей

Вопросы к экзамену (продолжение)

- 10. Основные законы химии: закон сохранения массы вещества, закон постоянства состава вещества, закон Авогадро и два следствия из него. Применение этих законов для вычисления состава, массы и объема веществ
- 11. Основы термохимии. Тепловой эффект химической реакции, изменение энтальпии химической реакции. Закон Гесса. Пример расчета изменения энтальпии реакции
- 12. Понятия скорости гомогенной и гетерогенной реакций. Зависимость скорости химической реакции от концентрации реагирующих веществ, давления, температуры. Закон действия масс, правило Вант-Гоффа.
- 13. Сущность химического равновесия и условие его наступления. Константа химического равновесия. Определение направления смещение химического равновесия в соответствии с принципом Ле Шателье.
- 14. Понятие раствор. Типы растворов. Способы выражения состава (концентрации) растворов
- 15. Теория электролитической диссоциации. Степень и константа диссоциации. Сильные и слабые электролиты
- 16. Реакции ионного обмена, условия их протекания. Порядок составления ионных уравнений
- 17. Диссоциация воды, ионное произведение воды. Водородный показатель. Шкала рН растворов
- 18. Гидролиз солей
- 19. Сущность окислительно-восстановительных реакций и условие их протекания. Степени окисления атомов и порядок их определения. Составление уравнений окислительно-восстановительных реакции на основе метода электронного баланса
- 20. Комплексные соединения металлов, их состав и поведение (устойчивость) в растворах. Константа нестойкости комплексных ионов.
- 21. Химия s,p,d-и f-элементов таблицы Менделеева
- 22. Химия биогенных элементов. Понятие о микроэлементах.