Chapter 7

 Virtex Arithmetic Structures
Overview

- Addition and subtraction
- Multiplication
- DSP48
- DSP48E

Basic Adder Equations

$\mathrm{Si}=\mathrm{Ai} \mathrm{XOR} \mathrm{Bi} \mathrm{XOR} \mathrm{Ci}$

$$
\mathrm{Ci}+1=\mathrm{Ai} \mathrm{Bi}+(\mathrm{Ai} \text { XOR Bi) } \mathrm{Ci}
$$

Note: not unique expression for $\mathrm{Ci}+1$

Basic Ripple Adder

Fast Carry Chains

Tracing Carry Chain

Counters Built from Adders

Multiplication Review

A3A2A1A0
X B1B0

Just like in the third grade . . .

Fabric Based Multiplier

Figure 5: $\mathbf{N} \times 2$ Full Multiplier Implementation

Mult/AND Identification

Block Multipliers

- Xilinx Spartan 3/E and Virtex II = 18 bit
- Applications needing fewer bits can tie off higher order bits appropriately
- Applications needing more bits must either:
- Cascade block multipliers
- Combine blocks with fabric multipliers
- Other uses for block multipliers

Virtex II/Spartan 3/E Block Multipliers

Primitive	A Width	B Width	P Width	Signed/Unsigned	Output
MULT18X18	18	18	36	Signed (Two's Complement)	Combinatorial
MULT18X18S	18	18	36	Signed (Two's Complement)	Registered

X.67_ [2 _032403

Sequential 2's Complement

Spartan 3 Multiplier Mix

Device	Multiplier Columns	Multipliers
XC3S50	1	4
XC3S200	2	12
XC3S400	2	16
XC3S1000	2	24
XC3S1500	2	32
XC3S2000	2	40
XC3S4000	4	96
XC3S5000	4	104

With this many multipliers, better be something we can do with them if we Don't need this many. Also, must be other sizes we can create - somehow. See XAPP 467

22 X 16 Bit Multiplier

Fabric

Other Uses

- Multiply several small numbers with one block multiplier
- Division by repeated multiplication
- Barrel shift using multiplier
- Take two's complement of a number
- Get the magnitude of a two's complement number
- There are others

DSP 48

- Introduced for Virtex 4
- Designed to efficiently cascade
- Xilinx teamed with outside arithmetic specialists to get best speed/area blocks
- Supports multiple rounding formats
- Not present in all V4 families

Two Slice DSP 48

Simplified DSP 48

$\begin{array}{\|c\|} \text { Hex } \\ \text { OPMODE } \end{array}$	Binary OPMODE	XYZ Multiplexer Outputs and Adder/Subtracter Output			
[6:0]	Z Y X	Z	Y	X	Adder/Subtracter Output
0:00	000 00 00	0	0	0	$\pm \mathrm{CIN}$
0×02	0000010	0	0	P	$\pm(\mathrm{P}+\mathrm{CIN})$
0:03	0000011	0	0	A: $\mathrm{B}^{\text {d }}$	$\pm(\mathrm{A}: \mathrm{B}+\mathrm{CIN})$
0×05	0000101	0	Note 1		$\pm(\mathrm{A} \times \mathrm{B}+\mathrm{CIN})$
0:00	00011 do	0	C	0	$\pm(\mathrm{C}+\mathrm{ClN})$
0:0e	0001110	0	C	P	$\pm(\mathrm{C}+\mathrm{P}+\mathrm{CIN})$
0:0f	0001111	0	C	A: $\mathrm{B}^{\text {d }}$	$\pm(\mathrm{A}: \mathrm{B}+\mathrm{C}+\mathrm{Cl})$
0×10	0010000	PCIN	0	0	PCIN \pm CIN
$0: 12$	0018010	PCIN	0	P	$\mathrm{PCIN} \pm(\mathrm{P}+\mathrm{CIN})$
0×13	0010011	PCIN	0	$\mathrm{A}: \mathrm{B}$	$\mathrm{P} \subset \mathrm{IN} \pm$ ($\mathrm{A}: \mathrm{B}+\mathrm{CIN}$)
0×15	0010101	PCIN	Note 1		$\mathrm{PCIN} \pm(\mathrm{A} \times \mathrm{B}+\mathrm{CIN})$
0×18	0011100	PCIN	C	0	$\mathrm{PCIN} \pm(\mathrm{C}+\mathrm{ClN})$
0:1e	0011110	PCIN	C	P	$\mathrm{PCIN} \pm(\mathrm{C}+\mathrm{P}+\mathrm{CIN})$
0 mlf	0011111	PCIN	C	$\mathrm{A}: \mathrm{B}$	$\mathrm{PCIN} \pm(\mathrm{A}: \mathrm{B}+\mathrm{C}+\mathrm{CIN})$
0:20	0100000	P	0	0	$\mathrm{P} \pm \mathrm{CIN}$
0×22	$010 \quad 0010$	P	0	P	$\mathrm{P} \pm(\mathrm{P}+\mathrm{CIN})$
00223	0100011	P	0	$\mathrm{A}: \mathrm{B}$	$\mathrm{P} \pm(\mathrm{A}: \mathrm{B}+\mathrm{CIN})$
0.225	010 al 01	P	Note 1		$\mathrm{P} \pm(\mathrm{A} \times \mathrm{B}+\mathrm{Cl} \times 1 \mathrm{~N})$
0:20	0101100	P	C	0	$\mathrm{P} \pm(\mathrm{C}+\mathrm{CIN})$
0n2e	0101110	P	C	P	$\mathrm{P} \pm(\mathrm{C}+\mathrm{P}+\mathrm{CIN})$
0:23f	0101111	P	C	A: ${ }^{\text {a }}$	$\mathrm{P} \pm(\mathrm{A}: \mathrm{B}+\mathrm{C}+\mathrm{CIN})$
0×30	0110000	C	0	0	$\mathrm{C} \pm \mathrm{ClN}$
0×32	0110010	c	0	P	$C \pm(\mathrm{P}+\mathrm{CIN})$
0.333	0110011	C	0	A: ${ }^{\text {B }}$	$C \pm(A: B+C I N)$
0.335	011 al 01	C	Note 1		$\mathrm{C} \pm(\mathrm{A} \times \mathrm{B}+\mathrm{CIN})$
0x30	0111100	c	C	0	$\mathrm{C} \pm(\mathrm{C}+\mathrm{CIN})$
0r3e	0111110	C	C	P	$\mathrm{C} \pm(\mathrm{C}+\mathrm{P}+\mathrm{CIN})$
$0 \times 3 \mathrm{f}$	0111111	C	C	A: $\mathrm{B}^{\text {d }}$	$\mathrm{C} \pm(\mathrm{A}: \mathrm{B}+\mathrm{C}+\mathrm{CIN})$
0×50	1010000	Shitt (PCIN)	0	0	Shitt(PCIN) \pm CIN
0x52	1010010	Shift (PCIN)	0	P	Shift(PEIN) \pm (P + CIN $)$
0253	1010011	Shift (PCIN)	0	$\mathrm{A}: \mathrm{B}$	Shift(PCIN $) \pm(\mathrm{A}: \mathrm{B}+\mathrm{CIN})$
0\%55	1010101	Shift (PCIN)	Note 1		Shift(PCIN $) \pm(\mathrm{A} \times \mathrm{B}+\mathrm{CIN})$
0×50	1011100	Shift (PCIN)	C	0	Shift(PCIN $) \pm(\mathrm{C}+\mathrm{CIN})$
0x5e	1011110	Shift (PCIN)	C	P	Shift(PCIN) \pm (C+P+CIN)
$0 \times 5 \mathrm{f}$	1011111	Shift (PCIN)	C	A: B	Shift(PCIN $) \pm(\mathrm{A}: \mathrm{B}+\mathrm{C}+\mathrm{CIN})$
0 mEO	1100000	Shift (P)	0	0	Shift(P) \pm CIN
0×62	1100010	Shift (P)	0	P	$5 \operatorname{hift}(\mathrm{P}) \pm(\mathrm{P}+\mathrm{CIN})$
0×53	1100011	Shift (P)	0	$\mathrm{A}: \mathrm{B}$	Shift $(\mathrm{P}) \pm(\mathrm{A}: \mathrm{B}+\mathrm{CIN})$
0×65	110 O1 01	Shift (P)			Shift $(\mathrm{P}) \pm(\mathrm{A} \times \mathrm{B}+\mathrm{Cl})$
0x6c	1101100	Shift (P)	C	0	Shift $(\mathrm{P}) \pm(\mathrm{C}+\mathrm{CIN})$
0.56e	1101110	Shift (P)	C	P	Shift $(\mathrm{P}) \pm(\mathrm{C}+\mathrm{P}+\mathrm{ClN})$
0 mbE	1101111	Shift (P)	C	A:B	Shift $(\mathrm{P}) \pm(\mathrm{A}: \mathrm{B}+\mathrm{C}+\mathrm{CIN})$

The DSP 48 Instruction Set

DSP 48 Timing

Doing Other Things - SQRT

Important to Do Other Things with DSP 48

- Divider
- Large multiplexer
- Barrel shifters
- Two's Complement converters
- Large counters
- Etc.

DSP 48 Handbook available on Xilinx website

Virtex 5 DSP48E

CARFYCASCOUT*

${ }^{4}$ Thece sknals are dedicated routing pelths internal to the DSP48E column. They are not gocecsitie via fabike routing resources.

Simpler DSP48E

Other Useful Functions

- Building up "word wise" logic
- AND,OR
- Same list as for the DSP48

Support

- Xilinx offers an elaborate (read:\$) set of tools that interface to the MatLab toolchain
- Focused on DSP algorithm development
- Permits "hardware in the loop" simulation
- Also working on higher level compile tools as DSP developers tend to be more mathematicians and less "hardware designers" (read: C, C++ oriented)

