NUFYP Mathematics

3.4 Trigonometry 4

Adina Amanbekkyzy

Lecture Outline

The addition and subtraction formulas $\sin (A \pm B), \cos (A \pm B)$, $\tan (A \pm B)$

Product-to-sum
 formulas
 Sum-to-p roduct formulas

Double angle formulas

$$
\begin{aligned}
& \sin 2 A \\
& \cos 2 A \\
& \tan 2 A
\end{aligned}
$$

Formulas

for lowering powers
\longrightarrow Half-angle formulas

Preview activity: 3.4 Trigonometry 4

Preview activity 3.4. Solution

Area of the triangle $\triangle A B C$ can be expressed in 2 ways:

1. $A_{\triangle A B C}=\frac{1}{2} \times A C \times C B$,
$A C=2 \cos \theta, C B=2 \sin \theta \rightarrow$
$A_{\triangle A B C}=2 \cos \theta \sin \theta$
2. $A_{\triangle A B C}=\frac{1}{2} \times A B \times h$
$A B=2, h=O C \times \sin 2 \theta=$
$=1 \times \sin 2 \theta=\sin 2 \theta$
$\rightarrow A_{\triangle A B C}=\sin 2 \theta$
3. $\sin 2 \theta=2 \cos \theta \sin \theta$

UNIVERSITY

Introduction

- Analytic trigonometry combines the use of a coordinate system with algebraic manipulation of the various trigonometry functions to obtain formulas useful for scientific and engineering applications.
- Trigonometric identities help to solve problems in many different areas such as

- Music. Sound waves • Sports. Path of javelin

- Surveying

Using addition formulae

$\cos (A-B) \equiv \cos (A) \cos (B)+\sin (A) \sin (B)$ $\cos (A+B) \equiv \cos (A) \cos (B)-\sin (A) \sin (B)$ $\sin (A+B) \equiv \sin (A) \cos (B)+\cos (A) \sin (B)$ $\sin (A-B) \equiv \sin (A) \cos (B)-\cos (A) \sin (B)$

$$
\tan (A+B) \equiv \frac{\tan (A)+\tan (B)}{1-\tan (A) \tan (\mathrm{B})}
$$

$$
\tan (A-B) \equiv \frac{\tan (A)-\tan (B)}{1+\tan (A) \tan (\mathrm{B})}
$$

Cosine of difference $\cos (A-B) \equiv \cos (A) \cos (B)+\sin (A) \sin (B)$

Sketch of Proof: Using the distance formula

$$
\begin{aligned}
& {[d(P, Q)]^{2}=[\cos (A)-\cos (B)]^{2}+[\sin (B)-\sin (A)]^{2}} \\
& =\cos ^{2}(A)-2 \cos (A) \cos (B)+\cos ^{2}(B) \\
& +\sin ^{2}(A)-2 \sin (A) \sin (B)+\sin ^{2}(B) \\
& =2-2[\cos (A) \cos (B)+\sin (A) \sin (B)]^{*}
\end{aligned}
$$

Using the Law of Cosine (the proof in 3.5)
$[d(P, Q)]^{2}=1^{2}+1^{2}-2 \cos (A-B)^{* *}$

Comparing * and ${ }^{* *}, \cos (A-B) \equiv \cos (A) \cos (B)+\sin (A) \sin (B)$

Proofs of Cosine of sum, Sine of sum and difference, tangent of sum and difference formulae are given in additional questions 1-5

Example 1: Given that $\sin (A)=-3 / 5$, where $\pi<A<3 \pi / 2$, and $\cos (B)=-12 / 13$, where B is obtuse, find the exact values of
(i) $\cos (A-B)$ (ii) $\tan (A+B)$
(i) $\cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)$
$\cos (A)= \pm \sqrt{1-\sin ^{2}(A)}= \pm \sqrt{1-(3 / 5)^{2}}= \pm 4 / 5$
Since A is in QIII, $\cos (A)=-\frac{4}{5}$

$\sin (B)= \pm \sqrt{1-\cos ^{2}(B)}= \pm \sqrt{1-(12 / 13)^{2}}= \pm 5 / 13$
Since B is in QII, $\sin (B)=\frac{5}{13} \Rightarrow \cos (A-B)=-\frac{4}{5}\left(-\frac{12}{13}\right)+\left(-\frac{3}{5}\right) \frac{5}{13}=\frac{33}{65}$

Example 1: Given that $\sin (A)=-3 / 5$, where $\pi<A$ $<3 \pi / 2$, and $\cos (B)=-12 / 13$, where B is obtuse, find the exact values of
(ii) $\tan (A+B)=\frac{\tan (A)+\tan (B)}{1-\tan (A) \tan (B)}$

$$
\begin{aligned}
& =\frac{\sin (A) / \cos (A)+\sin (B) / \cos (B)}{1-[\sin (A) / \cos (A)][\sin (B) / \cos (B)]} \\
& =\frac{3 / 4-5 / 12}{1-3 / 4(-5 / 12)}=\frac{16}{63}
\end{aligned}
$$

Your turn!

If $f(x)=\sin x$, show that

$$
\frac{f(x+h)-f(x)}{h}=\sin x\left(\frac{\cos h-1}{h}\right)+\cos x\left(\frac{\sin h}{h}\right)
$$

Solution

$$
\frac{f(x+h)-f(x)}{h}=\frac{\sin (x+h)-\sin x}{h}
$$

Definition of f

$$
=\frac{\sin x \cos h+\cos x \sin h-\sin x}{h}
$$

Addition Formula for Sine
$=\frac{\sin x(\cos h-1)+\cos x \sin h}{h}$
Factor
$=\sin x\left(\frac{\cos h-1}{h}\right)+\cos x\left(\frac{\sin h}{h}\right)$ Separate the fraction
This will be used in Calculus to derive that the derivative of sine is cosine

Example 2

Write $\sin \left(\cos ^{-1} x+\tan ^{-1} y\right)$ as an algebraic expression in x and y, where $-1 \leq x \leq 1$ and y is any real number.

Solution

$$
\text { Let } \theta=\cos ^{-1} x \text { and } \varphi=\tan ^{-1} y \text {. }
$$

We sketch triangles with angles θ and φ such that $\cos \theta=x$ and $\tan \varphi=y$.

$\cos \theta=x$

$\tan \varphi=$

From the triangles we have
$\sin \theta=\sqrt{1-x^{2}}$ (Note, $\sin \theta>0$ since $0 \leq \theta \leq \pi$)
$\cos \phi=\overline{\sqrt{1+y^{2}}}\left(\cos \phi>0\right.$, since $\left.-\frac{\pi}{2} \leq \phi \leq \frac{\pi}{2}\right)$
$\sin \phi=\frac{y}{\sqrt{1+y^{2}}}$ (Since $-\frac{\pi}{2} \leq \phi \leq \frac{\pi}{2}, y$ determines the sign of $\sin \phi$)
Using the Addition Formula
$\sin \left(\cos ^{-1} x+\tan ^{-1} y\right)=\sin (\theta+\phi)$
$=\sin \theta \cos \phi+\cos \theta \sin \phi$
$=\sqrt{1-x^{2}} \frac{1}{\sqrt{1+y^{2}}}+x \frac{y}{\sqrt{1+y^{2}}}=\frac{1}{\sqrt{1+y^{2}}}\left(\sqrt{1-x^{2}}+x y\right)$

Double angle formulae

$\sin (2 A) \equiv 2 \sin (A) \cos (A)$
$\cos (2 A) \equiv \cos ^{2}(A)-\sin ^{2}(A)=2 \cos ^{2}(A)-1=1-2 \sin ^{2}(A)$
$\tan (2 A) \equiv \frac{2 \tan (A)}{1-\tan ^{2}(A)}$

Prove double angle for sine

Prove $\sin (2 A)=2 \sin (A) \cos (A)$

Using addition formula for $\sin (A+A)$:
$\sin (2 A)=\sin (A) \cos (A)+s \operatorname{in}(A) \cos (A)$

$$
=2 \sin (A) \cos (A)
$$

Proofs for Cosine and tangent of double angle formulae are given in additional questions

6-7

Example 3: Solve

$3 \cos (2 x)-\cos (x)+2=0$, for $0 \leq x \leq 2 \pi$
Using the formula for double angle $3 \cos (2 x)-\cos (x)+2$
$=3\left[2 \cos ^{2}(x)-1\right]-\cos (x)+2=0$
$\Rightarrow 6 \cos ^{2}(x)-\cos (x)-1=0$
$\Rightarrow[3 \cos (x)+1][2 \cos (x)-1]=0$

2. $\cos (x)=\frac{1}{2} \rightarrow x=$ $\arccos \left(\frac{1}{3}\right), 0 \leq x \leq 2 \pi \rightarrow$

$$
x=\frac{\pi}{3}, x=\frac{5 \pi}{3}
$$

Example 4: By writing the following equations as quadratic in $\tan (x / 2)$ solve

 $\sin (x)+2 \cos (x)=1$, for $0 \leq x \leq 2 \pi$Using the double angle formulae and Pythagorean identity:
$\sin (x)+2 \cos (x)=1 \Leftrightarrow \sin \left(2 \frac{x}{2}\right)+2 \cos \left(2 \frac{x}{2}\right)=1$
$\Leftrightarrow 2 \cos (x / 2) \sin (x / 2)+2 \cos ^{2}(x / 2)-2 \sin ^{2}(x / 2)=\sin ^{2}(x / 2)+\cos ^{2}(x / 2)$
$\Leftrightarrow 2 \cos (x / 2) \sin (x / 2)+\cos ^{2}(x / 2)-3 \sin ^{2}(x / 2)=0$

Dividing by $3 \cos ^{2}(x / 2)$ and rearranging $\tan ^{2}(x / 2)-(2 / 3) \tan (x / 2)-(1 / 3)=0$ $\Leftrightarrow \tan (x / 2)=(1 / 2)[(2 / 3) \pm \sqrt{(4 / 9)+(12 / 9)}]$
$\Leftrightarrow \tan (x / 2)=-1 / 3$ or $\tan (x / 2)=1$
$\Leftrightarrow x / 2=\pi / 4$ or $x / 2=\pi+\arctan (-1 / 3)$
$\Leftrightarrow x=\pi / 2$ or $x \approx 5.64$

Note: If $0 \leq x \leq 2 \pi$,
then $0 \leq \frac{x}{2} \leq \pi$

Your turn!

Solve $\sin (2 x)=\sin (x)$ for $0 \leq x \leq 2 \pi$.

Your turn!

Solve $\sin (2 x)=\sin (x)$ for $0 \leq x \leq 2 \pi$ Using $\sin (2 x)$ formula:
$\sin (2 x)=2 \sin (x) \cos (x)$
$\Leftrightarrow 2 \cos (x) \sin (x)=\sin (x)$

$\Leftrightarrow \sin (x)[2 \cos (x)-1]=0$
$\Leftrightarrow \sin (x)=0$ or $\cos (x)=1 / 2$

$$
\begin{aligned}
& \text { 1. } \sin (x)=0 \\
& \rightarrow x=0, \pi, 2 \pi . \\
& 0 \leq x \leq 2 \pi
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2. } \cos (x)=\frac{1}{2} \rightarrow x= \\
& \arccos \left(\frac{1}{3}\right), 0 \leq x \leq \\
& 2 \pi \rightarrow x=\frac{\pi}{3}, x=\frac{5 \pi}{3}
\end{aligned}
$$

Using double angle formulae to prove

 identitiesExample 5: Prove $\tan (2 x) \equiv \frac{2}{\cot (x)-\tan (x)}$

$$
\begin{aligned}
\tan (2 x) & =\frac{2 \tan (x)}{1-\tan ^{2}(x)} \\
& =\frac{2}{1 / \tan (x)-\tan (x)} \\
& =\frac{2}{\cot (x)-\tan (x)}
\end{aligned}
$$

Example 6: Prove $\sin (x) \equiv \frac{2 \tan (x / 2)}{1+\tan ^{2}(x / 2)}$

$$
\begin{aligned}
& =\frac{2 \frac{\sin (x / 2)}{\cos (x / 2)}}{1+\frac{\sin ^{2}(x / 2)}{\cos ^{2}(x / 2)}} \\
& =\frac{2 \sin (x / 2) \cos (x / 2)}{\cos ^{2}(x / 2)+\sin ^{2}(x / 2)} \\
& =\sin (x)
\end{aligned}
$$

Your turn!

Prove $\sin (3 A) \equiv 3 \sin (A)-4 \sin ^{3}(A)$

Your turn!

Prove $\sin (3 A) \equiv 3 \sin (A)-4 \sin ^{3}(A)$

$$
\begin{aligned}
\sin (3 A) & =\sin (2 A+A) \\
& =\sin (2 A) \cos (A)+\cos (2 A) \sin (A) \\
& =2 \sin (A) \cos (A) \cos (A)+\left[\cos ^{2}(A)-\sin ^{2}(A)\right] \sin (A) \\
& =3 \sin (A) \cos ^{2}(A)-\sin ^{3}(A) \\
& =3 \sin (A)\left[1-\sin ^{2}(A)\right]-\sin ^{3}(A) \\
& =3 \sin (A)-4 \sin ^{3}(A)
\end{aligned}
$$

Half-angle formulas

FORMULAS FOR LOWERING POWERS

$$
\begin{gathered}
\sin ^{2} x=\frac{1-\cos 2 x}{2} \quad \cos ^{2} x=\frac{1+\cos 2 x}{2} \\
\tan ^{2} x=\frac{1-\cos 2 x}{1+\cos 2 x}
\end{gathered}
$$

Proof: Using double angle formula for cosine $\cos 2 x=1-2 \sin ^{2} x \rightarrow$
$\rightarrow \sin ^{2} x=\frac{1-\cos 2 x}{2}$
Homework: prove for cosine and tangent

Half-angle formulas

Using formulas for lowering powers

HALF-ANGLE FORMULAS

$$
\begin{gathered}
\sin \frac{u}{2}= \pm \sqrt{\frac{1-\cos u}{2}} \quad \cos \frac{u}{2}= \pm \sqrt{\frac{1+\cos u}{2}} \\
\tan \frac{u}{2}=\frac{1-\cos u}{\sin u}=\frac{\sin u}{1+\cos u}
\end{gathered}
$$

The choice of the + or - sign depends on the quadrant in which $u / 2$ lies.

Example 7

Find the exact value of $\sin 22.5^{\circ}$.

Solution:

Since 22.5° is half of 45°, we use the Half-Angle Formula for Sine with $u=45^{\circ}$. We choose the + sign because 22.5° is in the first quadra ${ }^{-1 .}$

$$
\begin{aligned}
\sin \frac{45^{\circ}}{2} & =\sqrt{\frac{1-\cos 45^{\circ}}{2}} \\
& =\sqrt{\frac{1-\sqrt{2} / 2}{2}} \\
& =\frac{1}{2} \sqrt{2-\sqrt{2}}
\end{aligned}
$$

Half-Angle Formula
$\cos 45^{\circ}=\sqrt{2} / 2$

Using R-formulae to solve equations

Expressions like

$$
a \cos x+b \sin x, \quad a, b>0
$$

can be written as a single sine or cosine of the form

$$
R \sin (x+\alpha) \text { or } R \cos (x-\alpha)
$$

where $R>0$ and $0 \leq \alpha \leq \frac{\pi}{2}$
A key idea is to use the sum (or difference) formula of sine or cosine.
We will study how to find R and α by examples.

Example 8:

Express $2 \cos x+5 \sin x$ as $R \sin (x+\alpha)$ where $0 \leq \alpha \leq \frac{\pi}{2}$
Solution
$2 \cos x+5 \sin x=R \sin x \cos \alpha+R \cos x \sin \alpha$
Comparing the two sides, we have $\cos \alpha=\frac{5}{R}$ and $\sin \alpha=\frac{2}{R}$

Hence, $R=\sqrt{2^{2}+5^{2}}=\sqrt{29}$ and $\alpha=\arctan \frac{2}{5}=0.38(2 \mathrm{dp})$

$$
2 \cos x+5 \sin x=\sqrt{29} \sin (x+0.38)
$$

In the previous example, we can also use the difference formula of cosine, $R \cos (x-\alpha)$.

However, we cannot use $R \sin (x-\alpha)$ or $R \cos (x+\alpha)$ because of the " + " sign between $2 \cos x$ and $5 \sin x$.

You need to look at the sign between the two terms and determine which form you should use.

Generally speaking, for $a, b>0$
$a \sin x \pm b \cos x=R \sin \left(x \pm \arctan \frac{b}{a}\right), R=\sqrt{a^{2}+b^{2}}$

Example 9: Solve $4 \cot (x)-3=-5 \operatorname{cosec}(x)$ for $-\pi<x<\pi$

$$
4 \cot (x)-3=-5 \operatorname{cosec}(x) \Rightarrow 4 \cos (x)-3 \sin (x)=-5
$$

Express $4 \cos x-3 \sin x$ as a single sine or cosine. Here, let's use cosine. (You can also use sine, see slide 31)
$4 \cos x-3 \sin x=R \cos (x+\alpha)=R \cos x \cos \alpha-R \sin x \sin \alpha$

$$
\cos \alpha=\frac{4}{R}, \quad \sin \alpha=\frac{3}{R}
$$

$R=\sqrt{3^{2}+4^{2}}=5, \quad \alpha=\arctan \frac{3}{4}$

Now solve the equation

$$
5 \cos \left(x+\arctan \frac{3}{4}\right)=-5
$$

$$
\begin{aligned}
& x+\arctan \frac{3}{4}=\pi+2 n \pi, \quad n \in Z \\
& x=-\arctan \frac{3}{4}+\pi+2 n \pi \\
& x=2.5(1 \mathrm{dp})
\end{aligned}
$$

Alternative expression for the previous example
$4 \cos x-3 \sin x=-(3 \sin x-4 \cos x)=-R \sin (x-\alpha)$
$=-(R \sin x \cos \alpha-R \cos x \sin \alpha)$

$$
\begin{aligned}
& \cos \alpha=\frac{3}{R}, \sin \alpha=\frac{4}{R} \\
& R=5, \quad \alpha=\arctan \frac{4}{3}=0.93(2 \mathrm{dp})
\end{aligned}
$$

$$
4 \cos x-3 \sin x=-5 \sin (x-0.93)
$$

Example 10

Without differentiating find the maximum value of

$$
12 \cos (x)+5 \sin (x)
$$

and smallest positive value of x at which it arises.

Example 10. Solution

Without differentiating find the maximum value of

$$
12 \cos (x)+5 \sin (x)
$$

and smallest positive value of x at which it arises.

$$
\begin{aligned}
& 12 \cos (x)+5 \sin (x)=\sqrt{12^{2}+5^{2}} \cos [x-\arctan (5 / 12)] \\
& \approx 13 \cos (x-0.39)
\end{aligned}
$$

Therefore, the maximum value is 13 . It is attained when

$$
\cos (x-0.39)=1
$$

that is, when $\quad x \approx 0.39$

Your turn!

Solve $\cos (2 x)+\sin (2 x)=1$ for $0 \leq x<2 \pi$

Your turn!

Solve $\cos (2 x)+\sin (2 x)=1$ for $0 \leq x<2 \pi$ $\cos (2 x)+\sin (2 x)=\sqrt{1^{2}+1^{2}} \sin [2 x+\arctan (1)]=\sqrt{2} \sin (2 x+\pi / 4)$
$\sqrt{2} \sin (2 x+\pi / 4)=1 \Rightarrow \sin (2 x+\pi / 4)=1 / \sqrt{2}$
$\Rightarrow 2 x+\pi / 4=\arcsin (1 / \sqrt{2})+2 \pi n=\pi / 4+2 \pi n, \quad n \in \mathbb{Z}$
$\Rightarrow x=\pi n, n \in \mathbb{Z}$

OR

$\Rightarrow 2 x+\pi / 4=\pi-\arcsin (1 / \sqrt{2})+2 \pi n=3 \pi / 4+2 \pi n, n \in \mathbb{Z}$
$\Rightarrow x=\pi / 4+\pi n, \quad n \in \mathbb{Z}$
But since $0 \leq x<2 \pi$, the only solutions are $x \in\{0, \pi / 4, \pi, 5 \pi / 4\}$

Using factor formulae

$\sin u \cos v=\frac{1}{2}[\sin (u+v)+\sin (u-v)]$
$\cos u \sin v=\frac{1}{2}[\sin (u+v)-\sin (u-v)]$
$\cos u \cos v=\frac{1}{2}[\cos (u+v)+\cos (u-v)]$
$\sin u \sin v=\frac{1}{2}[\cos (u-v)-\cos (u+v)]$

Prove

$$
\sin u \cos v=\frac{1}{2}[\sin (u+v)+\sin (u-v)]
$$

Üsing addition formulae
(1) $\sin (u+v)=\sin u \cos v+\cos u \sin v$
(2) $\sin (u-v)=\sin u \cos v-\cos u \sin v$
$\sin (u+v)+\sin (u-v)=2 \sin u \cos v \mid 2$
$\sin u \cos v=\frac{1}{2}[\sin (u+v)+\sin (u-v)]$

Sum-to-Product formulas

Sums and differences of sines and cosines can be expressed as products of sines and/or cosines by using the "factor formulae":

$$
\begin{aligned}
& \sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2} \\
& \sin x-\sin y=2 \cos \frac{x+y}{2} \sin \frac{x-y}{2} \\
& \cos x+\cos y=2 \cos \frac{x+y}{2} \cos \frac{x-y}{2} \\
& \cos x-\cos y=-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}
\end{aligned}
$$

Prove

$\sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$

- Using the first product-to-sum formula $\sin u \cos v=\frac{1}{2}[\sin (u+v)+\sin (u-v)]$
Let $u=\frac{x+y}{2}$ and $v=\frac{x-y}{2}$. Substitute,
$\sin \frac{x+y}{2} \cos \frac{x-y}{2}=\frac{1}{2}(\sin x+\sin y)$
$\Rightarrow \sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$

Example 11

Find the value of the product

$$
3 \cos 37.5^{\circ} \cos 7.5^{\circ}
$$

Example 11. Solution

$3 \cos 37.5^{\circ} \cos 7.5^{\circ}=3\left[\frac{1}{2}\left(\cos 45^{\circ}+\cos 30^{\circ}\right)\right]$

$$
=\frac{3}{2}\left[\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}\right]=\frac{3}{4}(\sqrt{2}+\sqrt{3})
$$

Example 12:

Solve $\sin (4 x)-\sin (3 x)=0$ for $0 \leq x \leq \pi$

$$
\left.\begin{array}{l}
\sin (4 x)-\sin (3 x)=2 \cos (7 x / 2) \sin (x / 2)=0 \\
\Rightarrow \cos (7 x / 2)=0 \\
0 \leq x \leq \pi \Rightarrow 0 \leq 7 x / 2 \leq 7 \pi / 2
\end{array}\right\} \Rightarrow \frac{7 x}{2} \in\left\{\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2}\right\}
$$

OR

$$
\left.\begin{array}{l}
\Rightarrow \sin (x / 2)=0 \\
0 \leq x \leq \pi \Rightarrow 0 \leq x / 2 \leq \pi / 2
\end{array}\right] \Rightarrow \frac{x}{2}=0
$$

$$
\Rightarrow x \in\{0\} \cup\left\{\frac{\pi}{7}, \frac{3 \pi}{7}, \frac{5 \pi}{7}, \pi\right\}=\left\{0, \frac{\pi}{7}, \frac{3 \pi}{7}, \frac{5 \pi}{7}, \pi\right\}
$$

Example 13

Prove that

$$
\frac{\sin (x+2 y)+\sin (x+y)+\sin (x)}{\cos (x+2 y)+\cos (x+y)+\cos (x)}=\tan (x+y)
$$

Using factor formula for sines

$$
\sin (x+2 y)+\sin (x)=2 \sin (x+y) \cos (y)
$$

Using factor formula for cosines

$$
\begin{aligned}
& \cos (x+2 y)+\cos (x)=2 \cos (x+y) \cos (y) \\
\Rightarrow & \frac{\sin (x+2 y)+\sin (x+y)+\sin (x)}{\cos (x+2 y)+\cos (x+y)+\cos (x)}=\frac{\sin (x+y)[1+2 \cos (y)]}{\cos (x+y)[1+2 \cos (y)]}=\tan (x+y)
\end{aligned}
$$

Your turn!

Prove that $\frac{\sin (9 x)-\sin (x)}{\cos (12 x)+\cos (2 x)}=\frac{\sin (4 x)}{\cos (7 x)}$

Your turn!

Prove that $\frac{\sin (9 x)-\sin (x)}{\cos (12 x)+\cos (2 x)}=\frac{\sin (4 x)}{\cos (7 x)}$

Using factor formula for sines
$\sin (9 x)-\sin (x)=2 \sin (4 x) \cos (5 x)$
Using factor formula for cosines
$\cos (12 x)+\cos (2 x)=2 \cos (7 x) \cos (5 x)$

$$
\Rightarrow \frac{\sin (9 x)-\sin (x)}{\cos (12 x)+\cos (2 x)}=\frac{2 \sin (4 x) \cos (5 x)}{2 \cos (7 x) \cos (5 x)}=\frac{\sin (4 x)}{\cos (7 x)}
$$

Additional Question 1

Prove $\cos (A+B) \equiv \cos (A) \cos (B)-\sin (A) \sin (B)$

$$
\begin{aligned}
\cos (A+B) & =\cos [A-(-B)] \\
& =\cos (A) \cos (-B)+\sin (A) \sin (-B) \\
& =\cos (A) \cos (B)-\sin (A) \sin (B)
\end{aligned}
$$

Additional Question 2

Prove $\sin (A+B) \equiv \sin (A) \cos (B)+\cos (A) \sin (B)$

$$
\begin{aligned}
\sin (A+B) & =\cos \left[\frac{\pi}{2}-(A+B)\right] \\
& =\cos \left[\left(\frac{\pi}{2}-A\right)-B\right] \\
& =\cos \left(\frac{\pi}{2}-A\right) \cos (B)+\sin \left(\frac{\pi}{2}-A\right) \sin (B) \\
& =\sin (A) \cos (B)+\cos (A) \sin (B)
\end{aligned}
$$

Additional Question 3

Prove $\sin (A-B) \equiv \sin (A) \cos (B)-\cos (A) \sin (B)$

$$
\begin{aligned}
\sin (A-B) & =\sin [A+(-B)] \\
& =\sin (A) \cos (-B)+\cos (A) \sin (-B) \\
& =\sin (A) \cos (B)-\cos (A) \sin (B)
\end{aligned}
$$

Additional Question 4

Prove $\tan (A+B) \equiv \frac{\tan (A)+\tan (B)}{1-\tan (A) \tan (B)}$

$$
\begin{aligned}
\tan (A+B) & =\frac{\sin (A+B)}{\cos (A+B)} \\
= & \frac{\sin (A) \cos (B)+\cos (A) \sin (B)}{\cos (A) \cos (B)-\sin (A) \sin (B)} \\
= & \frac{\frac{\sin (A) \cos (B)}{\cos (A) \cos (B)}+\frac{\cos (A) \sin (B)}{\cos (A) \cos (B)}}{\frac{\cos (A) \cos (B)}{\cos (A) \cos (B)}-\frac{\sin (A) \sin (B)}{\cos (A) \cos (B)}}=\frac{\tan (A)+\tan (B)}{1-\tan (A) \tan (B)}
\end{aligned}
$$

Additional Question 5

Prove $\tan (A-B) \equiv \frac{\tan (A)-\tan (B)}{1+\tan (A) \tan (B)}$

$$
\begin{aligned}
\tan (A-B) & =\tan [A+(-B)] \\
& =\frac{\tan (A)+\tan (-B)}{1-\tan (A) \tan (-B)} \\
& =\frac{\tan (A)-\tan (B)}{1+\tan (A) \tan (B)}
\end{aligned}
$$

Additional Question 6

Prove $\cos (2 A)=\cos ^{2}(A)-\sin ^{2}(A)$

$$
\begin{aligned}
& \cos ^{2}(A)-\sin ^{2}(A)=2 \cos ^{2}(A)-1 \\
& \cos ^{2}(A)-\sin ^{2}(A)=1-2 \sin ^{2}(A)
\end{aligned}
$$

Additional Question 6

$\cos (2 A)=\cos (A) \cos (A)-\sin (A) \sin (A)$

$$
=\cos ^{2}(A)-\sin ^{2}(A)
$$

$\cos ^{2}(A)-\sin ^{2}(A)=\cos ^{2}(A)-\left[1-\cos ^{2}(A)\right]=2 \cos ^{2}(A)-1$
$\cos ^{2}(A)-\sin ^{2}(A)=\left[1-\sin ^{2}(A)\right]-\sin ^{2}(A)=1-2 \sin ^{2}(A)$

Additional Question 7

Prove $\tan (2 A)=\frac{2 \tan (A)}{1-\tan ^{2}(A)}$

$$
\begin{aligned}
\tan (2 A) & =\frac{\tan (A)+\tan (A)}{1-\tan (A) \tan (A)} \\
& =\frac{2 \tan (A)}{1-\tan ^{2}(A)}
\end{aligned}
$$

Additional Question 8(a)

Prove that expressions of the form

$$
a \cos (x) \pm b \sin (x)
$$

where $a>0$ and $b>0$, can be expressed in the following form
$R \cos (x \boxtimes \alpha), \quad$ where $\quad R=\sqrt{a^{2}+b^{2}}, \quad$ and $\quad \alpha=\arctan (b / a)$

Additional Question 8(a)

$a \cos (x) \pm b \sin (x)=$
$\sqrt{a^{2}+b^{2}}\left[\frac{a}{\sqrt{a^{2}+b^{2}}} \cos (x) \pm \frac{b}{\sqrt{a^{2}+b^{2}}} \sin (x)\right]=$
$\sqrt{a^{2}+b^{2}}[\cos (\alpha) \cos (x) \pm \sin (\alpha) \sin (x)]$
Using difference formula for cosine
$=\sqrt{a^{2}+b^{2}} \cos [x \mp \arctan (b / a)]$

Additional Question 8(b)

Prove that expressions of the form

$$
a \sin (x) \pm b \cos (x)
$$

where $a>0$ and $b>0$, can be expressed in the following form
$R \sin (x \pm \beta), \quad$ where $\quad R=\sqrt{a^{2}+b^{2}}, \quad$ and $\quad \beta=\arctan (b / a)$

Additional Question 8(b)

$a \sin (x) \pm b \cos (x)=$
$\sqrt{a^{2}+b^{2}}\left[\frac{a}{\sqrt{a^{2}+b^{2}}} \sin (x) \pm \frac{b}{\sqrt{a^{2}+b^{2}}} \cos (x)\right]=$
$\sqrt{a^{2}+b^{2}}[\cos (\beta) \sin (x) \pm \sin (\beta) \cos (x)]$

Using addition formula for sine

$$
=\sqrt{a^{2}+b^{2}} \sin [x \pm \arctan (b / a)]
$$

Learning outcomes

3.4.1 Apply the addition and subtraction formulas, the half angle and double angle formulas, R -formula, the product to sum formulas and the sum to product formulas to simplify expressions or prove identities
3.4.2 Solve trigonometric equations involving multiple angles

Preview activity: 3.5 Trigonometry 5

Hearing Test

People can hear sounds at frequencies from about 20 Hz to $20,000 \mathrm{~Hz}$, though we hear sounds best from $1,000 \mathrm{~Hz}$ to $5,000 \mathrm{~Hz}$. Dogs can hear from about 64 Hz to $44,000 \mathrm{~Hz}$!

In this video, you can hear the sound at frequencies from 20 Hz to $20,000 \mathrm{~Hz}$ and see their corresponding waves.
Do the quick test and see how much you can hear. Also, observe how the sound and its wave change when the frequency becomes higher.

