

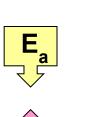
ОСНОВНЫЕ ПОНЯТИЯ О ХИМИЧЕСКОЙ РЕАКЦИИ

Основные понятия о химической реакции

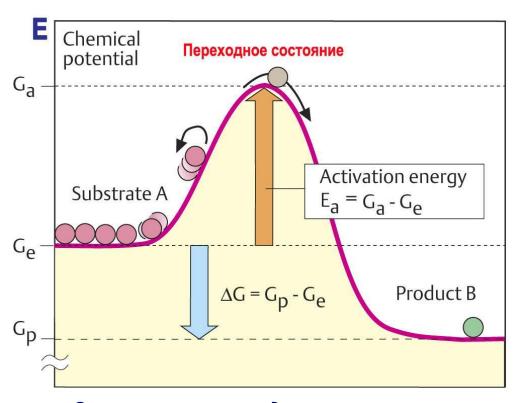
Химическая реакция – разрыв старых и образование новых химических связей.

исходные молекулы

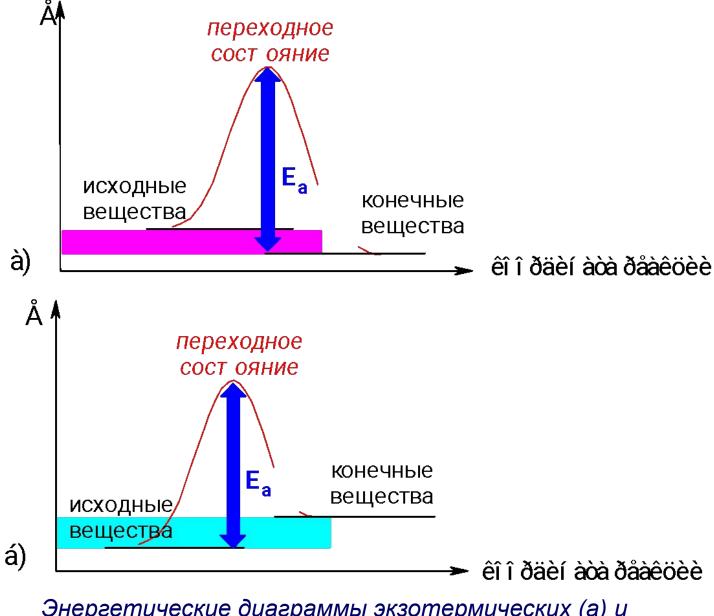
активированные молекулы

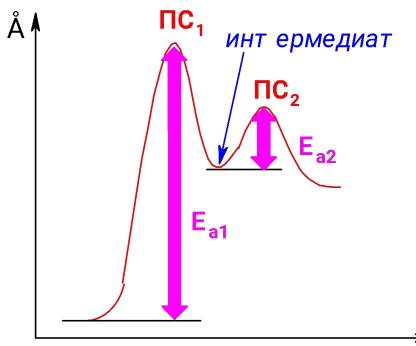


активированный комплекс



конечные молекулы

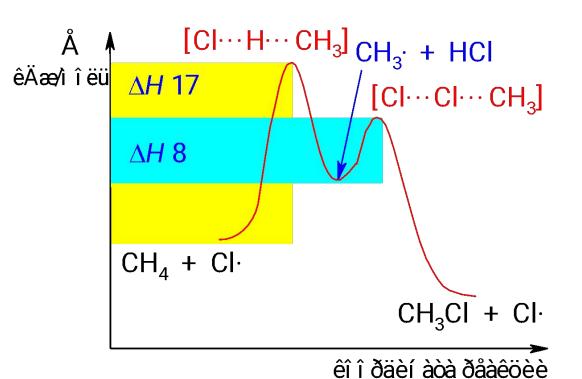

Минимальное количество энергии, необходимое для протекания реакции – энергия активации (E_a)


Энергетическая диаграмма реакции

Энергетические диаграммы экзотермических (а) и эндотермических (б) реакций

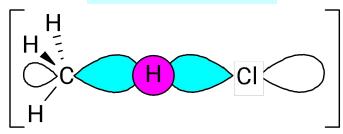
Интермедиаты

АК – 10⁻¹² сек

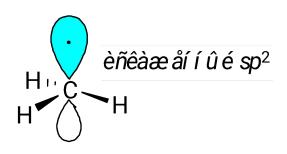


êî î ðäèí àòà ðåàêöèè

Энергетическая диаграмма реакции, протекающей через интермедиат

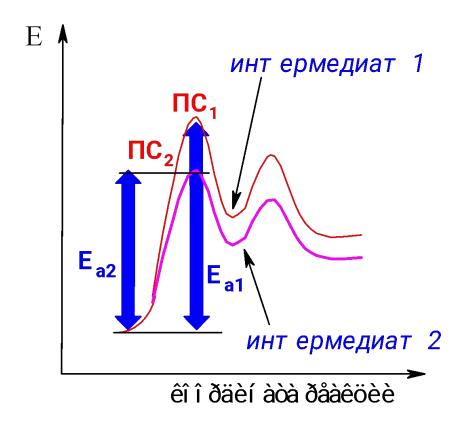

Хлорирование метана

$$CH_4 + CI \rightarrow CH_3 + HCI$$

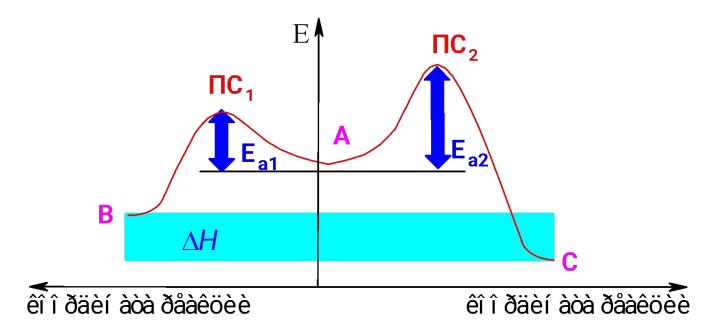


Энергетическая диаграмма реакции хлорирования метана

АК – 10⁻¹² сек



Структура активированного комплекса


Структура метильного радикала

Ш

Энергетическая диаграмма реакции, протекающей с образованием двух интермедиатов

! Реакция преимущественно протекает через более стабильный интермедиат

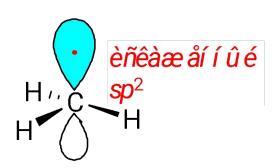
Энергетическая диаграмма конкурентной реакции В↔А→С

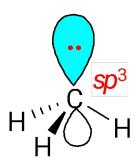
- А ← В кинетический контроль
- **А**← **С** термодинамический контроль

Типы разрыва ковалентной связи

гомолитический разрыв

 $A: B \rightarrow A^{\bullet} + B^{\bullet}$


свободные радикалы


гетеролитический разрыв

 $A:B\to A^-+B^+$

анион катион

метильный катион

метильный радикал

метильный анион

Свободные радикалы

Высокореакционные, малоустойчивые и короткоживущие частицы

$$CI^{\bullet}$$
, O_2N^{\bullet} , HO^{\bullet} , H_3C^{\bullet} , $C_6H_5O^{\bullet}$

C.

стабильные радикалы

$$(H_3C)_3C$$
 $C(CH_3)_3$

Нуклеофилы – частицы с электрондонорными свойствами, способными отдавать пару электронов на образование ковалентной связи с электрофильной частицей.

:Nu или Nu⁻

анионы, в т.ч. карбанионы

нейтральные соединения с атомами, имеющими неподеленные пары электронов

нейтральные соединения с сильно полярной связью

углеводороды с π-электронными системами

$$H_3^{\delta-\delta+}$$
 HC=C-MgI

$$H_2C=CH_2$$

Электрофилы – частицы с электроноакцепторными свойствами, способные образовывать ковалентную связь с нуклеофильной компонентой за счет ее электронной пары.

Е или Е*

катионы, включая карбокатионы

нейтральные соединения с атомами, имеющими незаполненную орбиталь

нейтральные соединения с сильно полярной связью

$$R_2^{\delta+}$$
 $R_2^{\delta-}$ $R_2^{\delta+}$ $R_2^{\delta-}$ $R_2^{\delta+}$ $R_2^{\delta-}$ $R_2^{\delta-}$

нейтральные легко поляризующиеся соединения

Ш

Типы реакций

реакции присоединения (A от англ. addition)

 $\mathrm{CH_2} = \mathrm{CH_2} + \mathrm{Cl_2} \rightarrow \mathrm{CH_2} \mathrm{Cl} - \mathrm{CH_2} \mathrm{Cl}$

реакции замещения (S от англ. substitution)

 $CH_3Br + AgOH \rightarrow CH_3OH + AgBr$

реакции отщепления (E от англ. elimination)

 $CH_3CH_2OH \rightarrow CH_2=CH_2 + H_2O$

реакции циклоприсоединения

$$HC \stackrel{>}{\sim} CH_2 CH_2 \longrightarrow CN$$

кислотно-основные реакции

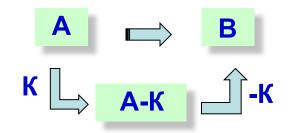
 $HC1 + NH_2CH_3 \rightarrow CH_3NH_3^+C1^-$

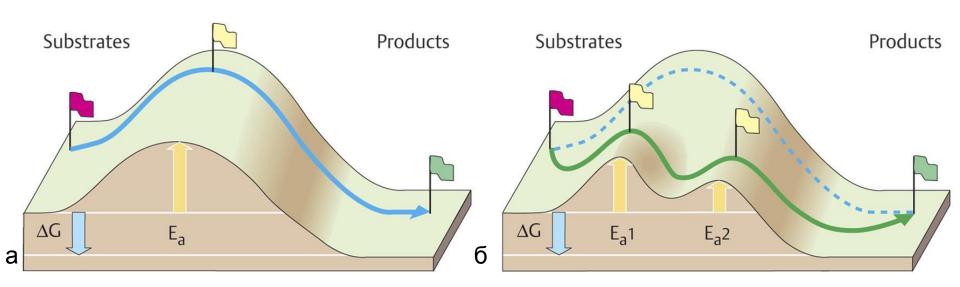
реакции изомеризации

 $CH_2=C=CH_2 \xrightarrow{Na} HC=C-CH_3$

Ш

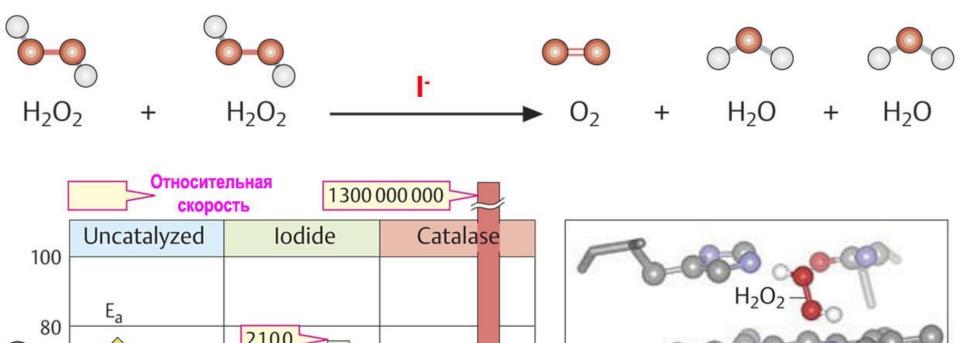
Окислительно-восстановительные реакции

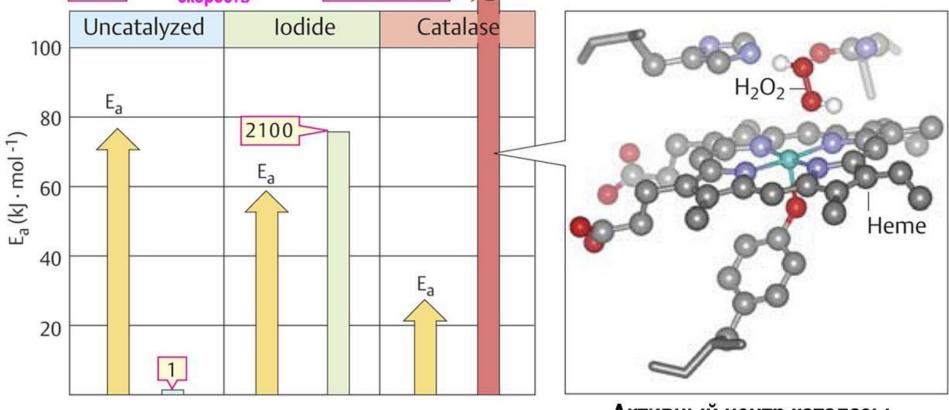

$$_{3}^{-3}$$
 $_{4}^{-1}$ $_{2}^{-1}$ $_{2}^{-2}$ $_{3}^{-1}$ $_{4}^{-2}$ $_{5}^{-2}$ $_{2}^{-1}$ $_{4}^{-1}$ $_{2}^{-1}$ $_{5}^{-1}$ $_{6}^{-1}$ $_{6}^{-1}$ $_{6}^{-1}$ $_{7}^{-1}$ $_{1}^{-1}$ $_{1}^{-1}$ $_{1}^{-1}$ $_{2}^{-1}$ $_{3}^{-1}$ $_{4}^{-1}$ $_{2}^{-1}$ $_{3}^{-1}$ $_{4}^{-1}$ $_{2}^{-1}$ $_{3}^{-1}$ $_{4}^{-1}$ $_{2}^{-1}$ $_{3}^{-1}$ $_{4}^{-1}$ $_{2}^{-1}$ $_{3}^{-1}$ $_{4}^{-1}$ $_{2}^{-1}$ $_{3}^{-1}$ $_{4$


$$\stackrel{-3}{\longrightarrow}$$
 $\stackrel{[0]}{\longrightarrow}$ $\stackrel{-1}{\longrightarrow}$ $\stackrel{-1}{\longrightarrow}$ $\stackrel{[0]}{\longrightarrow}$ $\stackrel{+1}{\longrightarrow}$ $\stackrel{[0]}{\longrightarrow}$ $\stackrel{+3}{\longrightarrow}$ $\stackrel{NO}{\longrightarrow}$ окисление $\stackrel{\longrightarrow}{\longrightarrow}$ $\stackrel{\longrightarrow}{\longrightarrow}$ $\stackrel{\longrightarrow}{\longrightarrow}$ восстановление

II 12

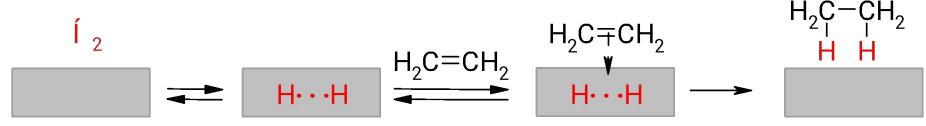
Каталитические реакции


Катализатор – вещество, увеличивающее скорость реакции, но не меняющееся в результате реакции и не входящее в состав реагентов или продуктов



Энергетические диаграммы некатализируемой (а) и катализируемой (б) реакций

I 13



Ш

Активный центр каталазы

Катализаторы

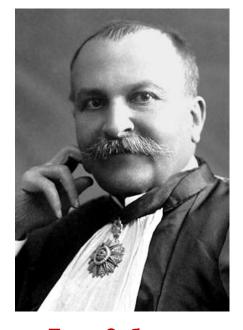
Гетерогенные катализаторы

поверхность катализатора

Катализаторы гидрирования:

платина мелкодисперсная PtO₂, PdO (*катализаторы Адамса*)

Ш


Роджер Адамс (1889-1971) – амер. химик, ун-т Иллинойса, руков. ~ 250 PhD

Катализаторы гидрирования:

никель порошковый

никель Ренея (скелетный никель) $CuO \cdot Cr_2O_3$ (катализатор Адкинса)

Поль Сабатье (1854-1941) – фр. химик

Мюррей Реней (1885-1966) – амер. инженер

Гомер Адкинс (1892-1949) – амер. химик-органик


1912, химия

II 16

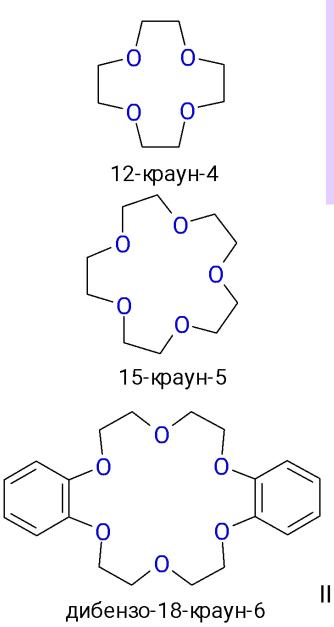
Гомогенные катализаторы

 $[(C_6H_5)_3P]_3$ RhCl катализатор Уилкинсона

 $[(C_6H_5)_3P]_3$ Ru·HCl и др.

Джефри Уилкинсон (1921-1996) – англ. химик

II 17


Межфазный катализ

$$\begin{array}{c} \text{\'a\'a\'i\' \it c\'i\'e} \\ R_4 N^+ \, \text{Hal}^- \, + \, R_- N_3 & \longleftarrow & R_4 N^+ \, N_3^- \, + \, R_- \text{Hal} \\ \\ R_4 N^+ \, \text{Hal}^- \, + \, N a^+ \, N_3^- & \longrightarrow & R_4 N^+ \, N_3^- \, + \, N a^+ \, \text{Hal}^- \\ \\ \hat{\text{a\^i\'e}} \\ \hat{\text{a\^i\'e}} \\ \end{array}$$

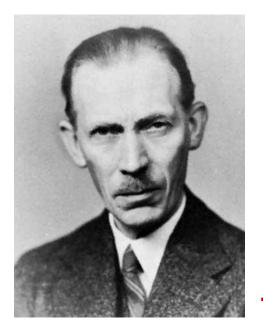
Межфазные катализаторы:

четвертичные аммонийные соли

Межфазные катализаторы: краун-эфиры

$$Ph$$
 $C=C$ H $KMnO_4$ $RMnO_4$ RMn

Кислотность и основность


Теория Брёнстеда-Лоури 1923 г.

 $A-H + :B \iff A^- + B-H^+$

кислота основание сопряженное сопряженная основание кислота

Кислотность – способность отдавать протон. **Основность** – способность присоединять протон.

! Сильной кислоте соответствует слабое сопряженное основание и т.д.

Томас Лаури (Лоури) (1874-1936) – брит. химик

Йоханнес Брёнстед (1879 -1947) - датский физикохимик

Ш

B-H⁺

кислота основание

сопряженное основание

сопряженная кислота

$$K_p = \frac{[A^-][BH^+]}{[AH][B]}$$

растворы слабых электролитов

$$A-H + H_2O \iff A^- + H_3O^+$$

$$K_p = \frac{[A^-][H_3O^+]}{[AH][H_2O]}$$

$$K_{a} = K_{p} [H_{2}O] = \frac{[A^{-}][H_{3}O^{+}]}{[AH]}$$

$$pK_a = -lg K_a$$

константа кислотности

$$pK_b = 14$$
 - pK_a константа основности

константа кислотности сопряженной кислоты BH⁺

$$H-C^{'}_{O-H}$$
 $O-H$ H_3C-CH_2-O-H $3,75$ $10,0$ $15,9$

NH-кислоты

СН-кислоты
$$HC \equiv C-H$$
 Cl_3C-H $H-CH_2-NO_2$ 25 15,7 10,2

 \parallel

Теория Льюиса 1923 г.

Кислотность – способность соединения принимать электронную пару на свободную орбиталь.

Основность – способность соединения отдавать электронную пару.

Гилберт Льюис (1875-1946) – амер. физикохимик

Кислоты Льюиса

протон, имеющий вакантную орбиталь, H^+ Na⁺, Ag⁺, Cu²⁺, Zn²⁺, Fe³⁺, Al³⁺ катионы металлов, Br⁺, NO₂⁺, R₃C⁺ другие катионы, в **TOM** числе карбокатионы, BF₃, AlCl₃, FeCl₃, FeBr₃, ZnCl₂, галогениды элементов с вакантными SnCl₄ орбиталями Ш 23

Основания Льюиса

n-основания Льюиса, в том числе,

анионы, включая карбанионы,

нейтральные соединения с атомами, имеющими неподеленные пары электронов;

 π -основания Льюиса — углеводороды с π электронными системами

HO⁻, HS⁻, Hal⁻, HC≡C⁻, RCOO⁻

H₂Ö, RÖH, H₂S, NH₃, RNH₂

$$H_2C=CH_2$$
,

Примеры кислотно-основных взаимодействий

$$R-Cl$$
: $+ AICl_3$ \longrightarrow $R-Cl-AICl_3$ $(C_2H_5)_2O$: $+ BF_3 \longrightarrow (C_2H_5)_2O-BF_3$ основание кислот а Льюиса Льюиса